MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplcmlem2 Structured version   Visualization version   GIF version

Theorem prmgaplcmlem2 16984
Description: Lemma for prmgaplcm 16992: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
prmgaplcmlem2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))

Proof of Theorem prmgaplcmlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 13494 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
21adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ‘2))
3 breq1 5141 . . . . 5 (𝑖 = 𝐼 → (𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ↔ 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)))
4 breq1 5141 . . . . 5 (𝑖 = 𝐼 → (𝑖𝐼𝐼𝐼))
53, 4anbi12d 630 . . . 4 (𝑖 = 𝐼 → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼)))
65adantl 481 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼)))
7 prmgaplcmlem1 16983 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼))
8 elfzelz 13498 . . . . . 6 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
9 iddvds 16210 . . . . . 6 (𝐼 ∈ ℤ → 𝐼𝐼)
108, 9syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼𝐼)
1110adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼𝐼)
127, 11jca 511 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼))
132, 6, 12rspcedvd 3606 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼))
14 fzssz 13500 . . . . . 6 (1...𝑁) ⊆ ℤ
15 fzfid 13935 . . . . . 6 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
16 0nelfz1 13517 . . . . . . 7 0 ∉ (1...𝑁)
1716a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ∉ (1...𝑁))
18 lcmfn0cl 16560 . . . . . 6 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
1914, 15, 17, 18mp3an2i 1462 . . . . 5 (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ∈ ℕ)
2019adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
21 eluz2nn 12865 . . . . . 6 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
221, 21syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
2322adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
2420, 23nnaddcld 12261 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ)
25 ncoprmgcdgt1b 16585 . . 3 ((((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)))
2624, 23, 25syl2anc 583 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)))
2713, 26mpbid 231 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wnel 3038  wrex 3062  wss 3940   class class class wbr 5138  cfv 6533  (class class class)co 7401  Fincfn 8935  0cc0 11106  1c1 11107   + caddc 11109   < clt 11245  cn 12209  2c2 12264  cz 12555  cuz 12819  ...cfz 13481  cdvds 16194   gcd cgcd 16432  lcmclcmf 16523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-prod 15847  df-dvds 16195  df-gcd 16433  df-lcmf 16525
This theorem is referenced by:  prmgaplcm  16992
  Copyright terms: Public domain W3C validator