![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmgaplcmlem2 | Structured version Visualization version GIF version |
Description: Lemma for prmgaplcm 17062: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less then or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
Ref | Expression |
---|---|
prmgaplcmlem2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13551 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
2 | 1 | adantl 480 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
3 | breq1 5156 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ↔ 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼))) | |
4 | breq1 5156 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
6 | 5 | adantl 480 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
7 | prmgaplcmlem1 17053 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) | |
8 | elfzelz 13555 | . . . . . 6 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
9 | iddvds 16272 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
11 | 10 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
12 | 7, 11 | jca 510 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼 ∥ 𝐼)) |
13 | 2, 6, 12 | rspcedvd 3610 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼)) |
14 | fzssz 13557 | . . . . . 6 ⊢ (1...𝑁) ⊆ ℤ | |
15 | fzfid 13993 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin) | |
16 | 0nelfz1 13574 | . . . . . . 7 ⊢ 0 ∉ (1...𝑁) | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 0 ∉ (1...𝑁)) |
18 | lcmfn0cl 16627 | . . . . . 6 ⊢ (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ) | |
19 | 14, 15, 17, 18 | mp3an2i 1463 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ∈ ℕ) |
20 | 19 | adantr 479 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ) |
21 | eluz2nn 12920 | . . . . . 6 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
23 | 22 | adantl 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
24 | 20, 23 | nnaddcld 12316 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ) |
25 | ncoprmgcdgt1b 16652 | . . 3 ⊢ ((((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))) | |
26 | 24, 23, 25 | syl2anc 582 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))) |
27 | 13, 26 | mpbid 231 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∉ wnel 3036 ∃wrex 3060 ⊆ wss 3947 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Fincfn 8974 0cc0 11158 1c1 11159 + caddc 11161 < clt 11298 ℕcn 12264 2c2 12319 ℤcz 12610 ℤ≥cuz 12874 ...cfz 13538 ∥ cdvds 16256 gcd cgcd 16494 lcmclcmf 16590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-fz 13539 df-fzo 13682 df-seq 14022 df-exp 14082 df-hash 14348 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-clim 15490 df-prod 15908 df-dvds 16257 df-gcd 16495 df-lcmf 16592 |
This theorem is referenced by: prmgaplcm 17062 |
Copyright terms: Public domain | W3C validator |