| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgaplcmlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for prmgaplcm 17038: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmgaplcmlem2 | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13488 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
| 3 | breq1 5113 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ↔ 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼))) | |
| 4 | breq1 5113 | . . . . 5 ⊢ (𝑖 = 𝐼 → (𝑖 ∥ 𝐼 ↔ 𝐼 ∥ 𝐼)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑖 = 𝐼 → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 6 | 5 | adantl 481 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼 ∥ 𝐼))) |
| 7 | prmgaplcmlem1 17029 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)) | |
| 8 | elfzelz 13492 | . . . . . 6 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 9 | iddvds 16246 | . . . . . 6 ⊢ (𝐼 ∈ ℤ → 𝐼 ∥ 𝐼) | |
| 10 | 8, 9 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∥ 𝐼) |
| 11 | 10 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ 𝐼) |
| 12 | 7, 11 | jca 511 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼 ∥ 𝐼)) |
| 13 | 2, 6, 12 | rspcedvd 3593 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼)) |
| 14 | fzssz 13494 | . . . . . 6 ⊢ (1...𝑁) ⊆ ℤ | |
| 15 | fzfid 13945 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin) | |
| 16 | 0nelfz1 13511 | . . . . . . 7 ⊢ 0 ∉ (1...𝑁) | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 0 ∉ (1...𝑁)) |
| 18 | lcmfn0cl 16603 | . . . . . 6 ⊢ (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ) | |
| 19 | 14, 15, 17, 18 | mp3an2i 1468 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ∈ ℕ) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ) |
| 21 | eluz2nn 12854 | . . . . . 6 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
| 22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
| 23 | 22 | adantl 481 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
| 24 | 20, 23 | nnaddcld 12245 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ) |
| 25 | ncoprmgcdgt1b 16628 | . . 3 ⊢ ((((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))) | |
| 26 | 24, 23, 25 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ≥‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖 ∥ 𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))) |
| 27 | 13, 26 | mpbid 232 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 0cc0 11075 1c1 11076 + caddc 11078 < clt 11215 ℕcn 12193 2c2 12248 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 ∥ cdvds 16229 gcd cgcd 16471 lcmclcmf 16566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-dvds 16230 df-gcd 16472 df-lcmf 16568 |
| This theorem is referenced by: prmgaplcm 17038 |
| Copyright terms: Public domain | W3C validator |