MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplcmlem2 Structured version   Visualization version   GIF version

Theorem prmgaplcmlem2 17023
Description: Lemma for prmgaplcm 17031: The least common multiple of all positive integers less than or equal to a number plus an integer greater than 1 and less than or equal to the number are not coprime. (Contributed by AV, 14-Aug-2020.) (Revised by AV, 27-Aug-2020.)
Assertion
Ref Expression
prmgaplcmlem2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))

Proof of Theorem prmgaplcmlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 13481 . . . 4 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ‘2))
21adantl 481 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ‘2))
3 breq1 5110 . . . . 5 (𝑖 = 𝐼 → (𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ↔ 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼)))
4 breq1 5110 . . . . 5 (𝑖 = 𝐼 → (𝑖𝐼𝐼𝐼))
53, 4anbi12d 632 . . . 4 (𝑖 = 𝐼 → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼)))
65adantl 481 . . 3 (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑖 = 𝐼) → ((𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼)))
7 prmgaplcmlem1 17022 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼))
8 elfzelz 13485 . . . . . 6 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
9 iddvds 16239 . . . . . 6 (𝐼 ∈ ℤ → 𝐼𝐼)
108, 9syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼𝐼)
1110adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼𝐼)
127, 11jca 511 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (𝐼 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝐼𝐼))
132, 6, 12rspcedvd 3590 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼))
14 fzssz 13487 . . . . . 6 (1...𝑁) ⊆ ℤ
15 fzfid 13938 . . . . . 6 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
16 0nelfz1 13504 . . . . . . 7 0 ∉ (1...𝑁)
1716a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 0 ∉ (1...𝑁))
18 lcmfn0cl 16596 . . . . . 6 (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
1914, 15, 17, 18mp3an2i 1468 . . . . 5 (𝑁 ∈ ℕ → (lcm‘(1...𝑁)) ∈ ℕ)
2019adantr 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ)
21 eluz2nn 12847 . . . . . 6 (𝐼 ∈ (ℤ‘2) → 𝐼 ∈ ℕ)
221, 21syl 17 . . . . 5 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ)
2322adantl 481 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ)
2420, 23nnaddcld 12238 . . 3 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ)
25 ncoprmgcdgt1b 16621 . . 3 ((((lcm‘(1...𝑁)) + 𝐼) ∈ ℕ ∧ 𝐼 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)))
2624, 23, 25syl2anc 584 . 2 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑖 ∈ (ℤ‘2)(𝑖 ∥ ((lcm‘(1...𝑁)) + 𝐼) ∧ 𝑖𝐼) ↔ 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼)))
2713, 26mpbid 232 1 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 1 < (((lcm‘(1...𝑁)) + 𝐼) gcd 𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnel 3029  wrex 3053  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  Fincfn 8918  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cn 12186  2c2 12241  cz 12529  cuz 12793  ...cfz 13468  cdvds 16222   gcd cgcd 16464  lcmclcmf 16559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870  df-dvds 16223  df-gcd 16465  df-lcmf 16561
This theorem is referenced by:  prmgaplcm  17031
  Copyright terms: Public domain W3C validator