MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freshmansdream Structured version   Visualization version   GIF version

Theorem freshmansdream 21540
Description: For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋𝑃) + (𝑌𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
freshmansdream.s 𝐵 = (Base‘𝑅)
freshmansdream.a + = (+g𝑅)
freshmansdream.p = (.g‘(mulGrp‘𝑅))
freshmansdream.c 𝑃 = (chr‘𝑅)
freshmansdream.r (𝜑𝑅 ∈ CRing)
freshmansdream.1 (𝜑𝑃 ∈ ℙ)
freshmansdream.x (𝜑𝑋𝐵)
freshmansdream.y (𝜑𝑌𝐵)
Assertion
Ref Expression
freshmansdream (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))

Proof of Theorem freshmansdream
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 freshmansdream.r . . 3 (𝜑𝑅 ∈ CRing)
2 crngring 20210 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 freshmansdream.c . . . . 5 𝑃 = (chr‘𝑅)
43chrcl 21490 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ ℕ0)
51, 2, 43syl 18 . . 3 (𝜑𝑃 ∈ ℕ0)
6 freshmansdream.x . . 3 (𝜑𝑋𝐵)
7 freshmansdream.y . . 3 (𝜑𝑌𝐵)
8 freshmansdream.s . . . 4 𝐵 = (Base‘𝑅)
9 eqid 2736 . . . 4 (.r𝑅) = (.r𝑅)
10 eqid 2736 . . . 4 (.g𝑅) = (.g𝑅)
11 freshmansdream.a . . . 4 + = (+g𝑅)
12 eqid 2736 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
13 freshmansdream.p . . . 4 = (.g‘(mulGrp‘𝑅))
148, 9, 10, 11, 12, 13crngbinom 20300 . . 3 (((𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0) ∧ (𝑋𝐵𝑌𝐵)) → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
151, 5, 6, 7, 14syl22anc 838 . 2 (𝜑 → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
165nn0cnd 12569 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
17 1cnd 11235 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
1816, 17npcand 11603 . . . . . 6 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
1918oveq2d 7426 . . . . 5 (𝜑 → (0...((𝑃 − 1) + 1)) = (0...𝑃))
2019eqcomd 2742 . . . 4 (𝜑 → (0...𝑃) = (0...((𝑃 − 1) + 1)))
2120mpteq1d 5215 . . 3 (𝜑 → (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))
2221oveq2d 7426 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
23 ringcmn 20247 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
241, 2, 233syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
25 freshmansdream.1 . . . . 5 (𝜑𝑃 ∈ ℙ)
26 prmnn 16698 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
27 nnm1nn0 12547 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2825, 26, 273syl 18 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ0)
29 ringgrp 20203 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
301, 2, 293syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
3130adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Grp)
325adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑃 ∈ ℕ0)
33 fzssz 13548 . . . . . . . . 9 (0...((𝑃 − 1) + 1)) ⊆ ℤ
3433a1i 11 . . . . . . . 8 (𝜑 → (0...((𝑃 − 1) + 1)) ⊆ ℤ)
3534sselda 3963 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℤ)
36 bccl 14345 . . . . . . 7 ((𝑃 ∈ ℕ0𝑖 ∈ ℤ) → (𝑃C𝑖) ∈ ℕ0)
3732, 35, 36syl2anc 584 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℕ0)
3837nn0zd 12619 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℤ)
391, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4039adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Ring)
4112, 8mgpbas 20110 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
4212ringmgp 20204 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4339, 42syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4443adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (mulGrp‘𝑅) ∈ Mnd)
45 simpr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...((𝑃 − 1) + 1)))
4619adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (0...((𝑃 − 1) + 1)) = (0...𝑃))
4745, 46eleqtrd 2837 . . . . . . . 8 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...𝑃))
48 fznn0sub 13578 . . . . . . . 8 (𝑖 ∈ (0...𝑃) → (𝑃𝑖) ∈ ℕ0)
4947, 48syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃𝑖) ∈ ℕ0)
506adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑋𝐵)
5141, 13, 44, 49, 50mulgnn0cld 19083 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
52 elfznn0 13642 . . . . . . . 8 (𝑖 ∈ (0...((𝑃 − 1) + 1)) → 𝑖 ∈ ℕ0)
5352adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℕ0)
547adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑌𝐵)
5541, 13, 44, 53, 54mulgnn0cld 19083 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑖 𝑌) ∈ 𝐵)
568, 9ringcl 20215 . . . . . 6 ((𝑅 ∈ Ring ∧ ((𝑃𝑖) 𝑋) ∈ 𝐵 ∧ (𝑖 𝑌) ∈ 𝐵) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
5740, 51, 55, 56syl3anc 1373 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
588, 10mulgcl 19079 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑃C𝑖) ∈ ℤ ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
5931, 38, 57, 58syl3anc 1373 . . . 4 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
608, 11, 24, 28, 59gsummptfzsplit 19918 . . 3 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
6130adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Grp)
62 elfzelz 13546 . . . . . . . . 9 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℤ)
635, 62, 36syl2an 596 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℕ0)
6463nn0zd 12619 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℤ)
6539adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Ring)
6665, 42syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
67 fzssp1 13589 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ (0...((𝑃 − 1) + 1))
6867, 19sseqtrid 4006 . . . . . . . . . . 11 (𝜑 → (0...(𝑃 − 1)) ⊆ (0...𝑃))
6968sselda 3963 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ (0...𝑃))
7069, 48syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
716adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑋𝐵)
7241, 13, 66, 70, 71mulgnn0cld 19083 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
73 elfznn0 13642 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
7473adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
757adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑌𝐵)
7641, 13, 66, 74, 75mulgnn0cld 19083 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
7765, 72, 76, 56syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
7861, 64, 77, 58syl3anc 1373 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
798, 11, 24, 28, 78gsummptfzsplitl 19919 . . . . 5 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
8039adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ Ring)
81 prmdvdsbc 16750 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8225, 81sylan 580 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8380, 42syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
845nn0zd 12619 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
85 1nn0 12522 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
86 eluzmn 12864 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8784, 85, 86sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 1)))
88 fzss2 13586 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
8987, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1...(𝑃 − 1)) ⊆ (1...𝑃))
9089sselda 3963 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ (1...𝑃))
91 fznn0sub 13578 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑃) → (𝑃𝑖) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
936adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑋𝐵)
9441, 13, 83, 92, 93mulgnn0cld 19083 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
95 elfznn 13575 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ)
9695nnnn0d 12567 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
987adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑌𝐵)
9941, 13, 83, 97, 98mulgnn0cld 19083 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
10080, 94, 99, 56syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
101 eqid 2736 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1023, 8, 10, 101dvdschrmulg 21494 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑃 ∥ (𝑃C𝑖) ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
10380, 82, 100, 102syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
104103mpteq2dva 5219 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅)))
105104oveq2d 7426 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))))
106 ringmnd 20208 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10739, 106syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
108 ovex 7443 . . . . . . . 8 (1...(𝑃 − 1)) ∈ V
109101gsumz 18819 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (1...(𝑃 − 1)) ∈ V) → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
110107, 108, 109sylancl 586 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
111105, 110eqtrd 2771 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (0g𝑅))
112 0nn0 12521 . . . . . . . 8 0 ∈ ℕ0
113112a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
11441, 13, 43, 5, 6mulgnn0cld 19083 . . . . . . 7 (𝜑 → (𝑃 𝑋) ∈ 𝐵)
115 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 = 0) → 𝑖 = 0)
116115oveq2d 7426 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑃C𝑖) = (𝑃C0))
117115oveq2d 7426 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → (𝑃𝑖) = (𝑃 − 0))
118117oveq1d 7425 . . . . . . . . . 10 ((𝜑𝑖 = 0) → ((𝑃𝑖) 𝑋) = ((𝑃 − 0) 𝑋))
119115oveq1d 7425 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (𝑖 𝑌) = (0 𝑌))
120118, 119oveq12d 7428 . . . . . . . . 9 ((𝜑𝑖 = 0) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)))
121116, 120oveq12d 7428 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))))
122 bcn0 14333 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → (𝑃C0) = 1)
1235, 122syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃C0) = 1)
12416subid1d 11588 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 0) = 𝑃)
125124oveq1d 7425 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 0) 𝑋) = (𝑃 𝑋))
126 eqid 2736 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
12712, 126ringidval 20148 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12841, 127, 13mulg0 19062 . . . . . . . . . . . . . 14 (𝑌𝐵 → (0 𝑌) = (1r𝑅))
1297, 128syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 𝑌) = (1r𝑅))
130125, 129oveq12d 7428 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = ((𝑃 𝑋)(.r𝑅)(1r𝑅)))
1318, 9, 126ringridm 20235 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑃 𝑋) ∈ 𝐵) → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
13239, 114, 131syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
133130, 132eqtrd 2771 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = (𝑃 𝑋))
134123, 133oveq12d 7428 . . . . . . . . . 10 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (1(.g𝑅)(𝑃 𝑋)))
1358, 10mulg1 19069 . . . . . . . . . . 11 ((𝑃 𝑋) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
136114, 135syl 17 . . . . . . . . . 10 (𝜑 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
137134, 136eqtrd 2771 . . . . . . . . 9 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
138137adantr 480 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
139121, 138eqtrd 2771 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑋))
1408, 107, 113, 114, 139gsumsnd 19938 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
141111, 140oveq12d 7428 . . . . 5 (𝜑 → ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((0g𝑅) + (𝑃 𝑋)))
1428, 11, 101grplid 18955 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑃 𝑋) ∈ 𝐵) → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14330, 114, 142syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14479, 141, 1433eqtrd 2775 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
14518, 5eqeltrd 2835 . . . . 5 (𝜑 → ((𝑃 − 1) + 1) ∈ ℕ0)
14641, 13, 43, 5, 7mulgnn0cld 19083 . . . . 5 (𝜑 → (𝑃 𝑌) ∈ 𝐵)
147 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = ((𝑃 − 1) + 1))
14818adantr 480 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 1) + 1) = 𝑃)
149147, 148eqtrd 2771 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = 𝑃)
150149oveq2d 7426 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃C𝑖) = (𝑃C𝑃))
151149oveq2d 7426 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃𝑖) = (𝑃𝑃))
152151oveq1d 7425 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃𝑖) 𝑋) = ((𝑃𝑃) 𝑋))
153149oveq1d 7425 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑖 𝑌) = (𝑃 𝑌))
154152, 153oveq12d 7428 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)))
155150, 154oveq12d 7428 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))))
156 bcnn 14335 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → (𝑃C𝑃) = 1)
1575, 156syl 17 . . . . . . . . 9 (𝜑 → (𝑃C𝑃) = 1)
15816subidd 11587 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑃) = 0)
159158oveq1d 7425 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑃) 𝑋) = (0 𝑋))
16041, 127, 13mulg0 19062 . . . . . . . . . . . . 13 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
1616, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (0 𝑋) = (1r𝑅))
162159, 161eqtrd 2771 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑃) 𝑋) = (1r𝑅))
163162oveq1d 7425 . . . . . . . . . 10 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = ((1r𝑅)(.r𝑅)(𝑃 𝑌)))
1648, 9, 126ringlidm 20234 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑃 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
16539, 146, 164syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
166163, 165eqtrd 2771 . . . . . . . . 9 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
167157, 166oveq12d 7428 . . . . . . . 8 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (1(.g𝑅)(𝑃 𝑌)))
1688, 10mulg1 19069 . . . . . . . . 9 ((𝑃 𝑌) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
169146, 168syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
170167, 169eqtrd 2771 . . . . . . 7 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
171170adantr 480 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
172155, 171eqtrd 2771 . . . . 5 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑌))
1738, 107, 145, 146, 172gsumsnd 19938 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑌))
174144, 173oveq12d 7428 . . 3 (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17560, 174eqtrd 2771 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17615, 22, 1753eqtrd 2775 1 (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931  {csn 4606   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  cn 12245  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  Ccbc 14325  cdvds 16277  cprime 16695  Basecbs 17233  +gcplusg 17276  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  Mndcmnd 18717  Grpcgrp 18921  .gcmg 19055  CMndccmn 19766  mulGrpcmgp 20105  1rcur 20146  Ringcrg 20198  CRingccrg 20199  chrcchr 21467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-dvds 16278  df-gcd 16519  df-prm 16696  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-0g 17460  df-gsum 17461  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-cntz 19305  df-od 19514  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-srg 20152  df-ring 20200  df-cring 20201  df-chr 21471
This theorem is referenced by:  frobrhm  21541  ply1fermltlchr  22255
  Copyright terms: Public domain W3C validator