MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freshmansdream Structured version   Visualization version   GIF version

Theorem freshmansdream 21484
Description: For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋𝑃) + (𝑌𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
freshmansdream.s 𝐵 = (Base‘𝑅)
freshmansdream.a + = (+g𝑅)
freshmansdream.p = (.g‘(mulGrp‘𝑅))
freshmansdream.c 𝑃 = (chr‘𝑅)
freshmansdream.r (𝜑𝑅 ∈ CRing)
freshmansdream.1 (𝜑𝑃 ∈ ℙ)
freshmansdream.x (𝜑𝑋𝐵)
freshmansdream.y (𝜑𝑌𝐵)
Assertion
Ref Expression
freshmansdream (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))

Proof of Theorem freshmansdream
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 freshmansdream.r . . 3 (𝜑𝑅 ∈ CRing)
2 crngring 20154 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 freshmansdream.c . . . . 5 𝑃 = (chr‘𝑅)
43chrcl 21434 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ ℕ0)
51, 2, 43syl 18 . . 3 (𝜑𝑃 ∈ ℕ0)
6 freshmansdream.x . . 3 (𝜑𝑋𝐵)
7 freshmansdream.y . . 3 (𝜑𝑌𝐵)
8 freshmansdream.s . . . 4 𝐵 = (Base‘𝑅)
9 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
10 eqid 2729 . . . 4 (.g𝑅) = (.g𝑅)
11 freshmansdream.a . . . 4 + = (+g𝑅)
12 eqid 2729 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
13 freshmansdream.p . . . 4 = (.g‘(mulGrp‘𝑅))
148, 9, 10, 11, 12, 13crngbinom 20244 . . 3 (((𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0) ∧ (𝑋𝐵𝑌𝐵)) → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
151, 5, 6, 7, 14syl22anc 838 . 2 (𝜑 → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
165nn0cnd 12505 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
17 1cnd 11169 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
1816, 17npcand 11537 . . . . . 6 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
1918oveq2d 7403 . . . . 5 (𝜑 → (0...((𝑃 − 1) + 1)) = (0...𝑃))
2019eqcomd 2735 . . . 4 (𝜑 → (0...𝑃) = (0...((𝑃 − 1) + 1)))
2120mpteq1d 5197 . . 3 (𝜑 → (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))
2221oveq2d 7403 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
23 ringcmn 20191 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
241, 2, 233syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
25 freshmansdream.1 . . . . 5 (𝜑𝑃 ∈ ℙ)
26 prmnn 16644 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
27 nnm1nn0 12483 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2825, 26, 273syl 18 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ0)
29 ringgrp 20147 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
301, 2, 293syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
3130adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Grp)
325adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑃 ∈ ℕ0)
33 fzssz 13487 . . . . . . . . 9 (0...((𝑃 − 1) + 1)) ⊆ ℤ
3433a1i 11 . . . . . . . 8 (𝜑 → (0...((𝑃 − 1) + 1)) ⊆ ℤ)
3534sselda 3946 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℤ)
36 bccl 14287 . . . . . . 7 ((𝑃 ∈ ℕ0𝑖 ∈ ℤ) → (𝑃C𝑖) ∈ ℕ0)
3732, 35, 36syl2anc 584 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℕ0)
3837nn0zd 12555 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℤ)
391, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4039adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Ring)
4112, 8mgpbas 20054 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
4212ringmgp 20148 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4339, 42syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4443adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (mulGrp‘𝑅) ∈ Mnd)
45 simpr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...((𝑃 − 1) + 1)))
4619adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (0...((𝑃 − 1) + 1)) = (0...𝑃))
4745, 46eleqtrd 2830 . . . . . . . 8 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...𝑃))
48 fznn0sub 13517 . . . . . . . 8 (𝑖 ∈ (0...𝑃) → (𝑃𝑖) ∈ ℕ0)
4947, 48syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃𝑖) ∈ ℕ0)
506adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑋𝐵)
5141, 13, 44, 49, 50mulgnn0cld 19027 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
52 elfznn0 13581 . . . . . . . 8 (𝑖 ∈ (0...((𝑃 − 1) + 1)) → 𝑖 ∈ ℕ0)
5352adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℕ0)
547adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑌𝐵)
5541, 13, 44, 53, 54mulgnn0cld 19027 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑖 𝑌) ∈ 𝐵)
568, 9ringcl 20159 . . . . . 6 ((𝑅 ∈ Ring ∧ ((𝑃𝑖) 𝑋) ∈ 𝐵 ∧ (𝑖 𝑌) ∈ 𝐵) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
5740, 51, 55, 56syl3anc 1373 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
588, 10mulgcl 19023 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑃C𝑖) ∈ ℤ ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
5931, 38, 57, 58syl3anc 1373 . . . 4 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
608, 11, 24, 28, 59gsummptfzsplit 19862 . . 3 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
6130adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Grp)
62 elfzelz 13485 . . . . . . . . 9 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℤ)
635, 62, 36syl2an 596 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℕ0)
6463nn0zd 12555 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℤ)
6539adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Ring)
6665, 42syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
67 fzssp1 13528 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ (0...((𝑃 − 1) + 1))
6867, 19sseqtrid 3989 . . . . . . . . . . 11 (𝜑 → (0...(𝑃 − 1)) ⊆ (0...𝑃))
6968sselda 3946 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ (0...𝑃))
7069, 48syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
716adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑋𝐵)
7241, 13, 66, 70, 71mulgnn0cld 19027 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
73 elfznn0 13581 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
7473adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
757adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑌𝐵)
7641, 13, 66, 74, 75mulgnn0cld 19027 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
7765, 72, 76, 56syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
7861, 64, 77, 58syl3anc 1373 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
798, 11, 24, 28, 78gsummptfzsplitl 19863 . . . . 5 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
8039adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ Ring)
81 prmdvdsbc 16696 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8225, 81sylan 580 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8380, 42syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
845nn0zd 12555 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
85 1nn0 12458 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
86 eluzmn 12800 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8784, 85, 86sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 1)))
88 fzss2 13525 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
8987, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1...(𝑃 − 1)) ⊆ (1...𝑃))
9089sselda 3946 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ (1...𝑃))
91 fznn0sub 13517 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑃) → (𝑃𝑖) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
936adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑋𝐵)
9441, 13, 83, 92, 93mulgnn0cld 19027 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
95 elfznn 13514 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ)
9695nnnn0d 12503 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
987adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑌𝐵)
9941, 13, 83, 97, 98mulgnn0cld 19027 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
10080, 94, 99, 56syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
101 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1023, 8, 10, 101dvdschrmulg 21438 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑃 ∥ (𝑃C𝑖) ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
10380, 82, 100, 102syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
104103mpteq2dva 5200 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅)))
105104oveq2d 7403 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))))
106 ringmnd 20152 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10739, 106syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
108 ovex 7420 . . . . . . . 8 (1...(𝑃 − 1)) ∈ V
109101gsumz 18763 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (1...(𝑃 − 1)) ∈ V) → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
110107, 108, 109sylancl 586 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
111105, 110eqtrd 2764 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (0g𝑅))
112 0nn0 12457 . . . . . . . 8 0 ∈ ℕ0
113112a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
11441, 13, 43, 5, 6mulgnn0cld 19027 . . . . . . 7 (𝜑 → (𝑃 𝑋) ∈ 𝐵)
115 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 = 0) → 𝑖 = 0)
116115oveq2d 7403 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑃C𝑖) = (𝑃C0))
117115oveq2d 7403 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → (𝑃𝑖) = (𝑃 − 0))
118117oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑖 = 0) → ((𝑃𝑖) 𝑋) = ((𝑃 − 0) 𝑋))
119115oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (𝑖 𝑌) = (0 𝑌))
120118, 119oveq12d 7405 . . . . . . . . 9 ((𝜑𝑖 = 0) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)))
121116, 120oveq12d 7405 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))))
122 bcn0 14275 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → (𝑃C0) = 1)
1235, 122syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃C0) = 1)
12416subid1d 11522 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 0) = 𝑃)
125124oveq1d 7402 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 0) 𝑋) = (𝑃 𝑋))
126 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
12712, 126ringidval 20092 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12841, 127, 13mulg0 19006 . . . . . . . . . . . . . 14 (𝑌𝐵 → (0 𝑌) = (1r𝑅))
1297, 128syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 𝑌) = (1r𝑅))
130125, 129oveq12d 7405 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = ((𝑃 𝑋)(.r𝑅)(1r𝑅)))
1318, 9, 126ringridm 20179 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑃 𝑋) ∈ 𝐵) → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
13239, 114, 131syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
133130, 132eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = (𝑃 𝑋))
134123, 133oveq12d 7405 . . . . . . . . . 10 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (1(.g𝑅)(𝑃 𝑋)))
1358, 10mulg1 19013 . . . . . . . . . . 11 ((𝑃 𝑋) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
136114, 135syl 17 . . . . . . . . . 10 (𝜑 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
137134, 136eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
138137adantr 480 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
139121, 138eqtrd 2764 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑋))
1408, 107, 113, 114, 139gsumsnd 19882 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
141111, 140oveq12d 7405 . . . . 5 (𝜑 → ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((0g𝑅) + (𝑃 𝑋)))
1428, 11, 101grplid 18899 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑃 𝑋) ∈ 𝐵) → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14330, 114, 142syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14479, 141, 1433eqtrd 2768 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
14518, 5eqeltrd 2828 . . . . 5 (𝜑 → ((𝑃 − 1) + 1) ∈ ℕ0)
14641, 13, 43, 5, 7mulgnn0cld 19027 . . . . 5 (𝜑 → (𝑃 𝑌) ∈ 𝐵)
147 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = ((𝑃 − 1) + 1))
14818adantr 480 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 1) + 1) = 𝑃)
149147, 148eqtrd 2764 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = 𝑃)
150149oveq2d 7403 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃C𝑖) = (𝑃C𝑃))
151149oveq2d 7403 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃𝑖) = (𝑃𝑃))
152151oveq1d 7402 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃𝑖) 𝑋) = ((𝑃𝑃) 𝑋))
153149oveq1d 7402 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑖 𝑌) = (𝑃 𝑌))
154152, 153oveq12d 7405 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)))
155150, 154oveq12d 7405 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))))
156 bcnn 14277 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → (𝑃C𝑃) = 1)
1575, 156syl 17 . . . . . . . . 9 (𝜑 → (𝑃C𝑃) = 1)
15816subidd 11521 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑃) = 0)
159158oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑃) 𝑋) = (0 𝑋))
16041, 127, 13mulg0 19006 . . . . . . . . . . . . 13 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
1616, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (0 𝑋) = (1r𝑅))
162159, 161eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑃) 𝑋) = (1r𝑅))
163162oveq1d 7402 . . . . . . . . . 10 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = ((1r𝑅)(.r𝑅)(𝑃 𝑌)))
1648, 9, 126ringlidm 20178 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑃 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
16539, 146, 164syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
166163, 165eqtrd 2764 . . . . . . . . 9 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
167157, 166oveq12d 7405 . . . . . . . 8 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (1(.g𝑅)(𝑃 𝑌)))
1688, 10mulg1 19013 . . . . . . . . 9 ((𝑃 𝑌) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
169146, 168syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
170167, 169eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
171170adantr 480 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
172155, 171eqtrd 2764 . . . . 5 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑌))
1738, 107, 145, 146, 172gsumsnd 19882 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑌))
174144, 173oveq12d 7405 . . 3 (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17560, 174eqtrd 2764 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17615, 22, 1753eqtrd 2768 1 (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  Ccbc 14267  cdvds 16222  cprime 16641  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  Grpcgrp 18865  .gcmg 18999  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  chrcchr 21411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-prm 16642  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-cntz 19249  df-od 19458  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-srg 20096  df-ring 20144  df-cring 20145  df-chr 21415
This theorem is referenced by:  frobrhm  21485  ply1fermltlchr  22199
  Copyright terms: Public domain W3C validator