Step | Hyp | Ref
| Expression |
1 | | freshmansdream.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ CRing) |
2 | | crngring 19795 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
3 | | freshmansdream.c |
. . . . 5
⊢ 𝑃 = (chr‘𝑅) |
4 | 3 | chrcl 20730 |
. . . 4
⊢ (𝑅 ∈ Ring → 𝑃 ∈
ℕ0) |
5 | 1, 2, 4 | 3syl 18 |
. . 3
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
6 | | freshmansdream.x |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
7 | | freshmansdream.y |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
8 | | freshmansdream.s |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
9 | | eqid 2738 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
10 | | eqid 2738 |
. . . 4
⊢
(.g‘𝑅) = (.g‘𝑅) |
11 | | freshmansdream.a |
. . . 4
⊢ + =
(+g‘𝑅) |
12 | | eqid 2738 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
13 | | freshmansdream.p |
. . . 4
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
14 | 8, 9, 10, 11, 12, 13 | crngbinom 19860 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0)
∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑃 ↑ (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))))) |
15 | 1, 5, 6, 7, 14 | syl22anc 836 |
. 2
⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))))) |
16 | 5 | nn0cnd 12295 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℂ) |
17 | | 1cnd 10970 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℂ) |
18 | 16, 17 | npcand 11336 |
. . . . . 6
⊢ (𝜑 → ((𝑃 − 1) + 1) = 𝑃) |
19 | 18 | oveq2d 7291 |
. . . . 5
⊢ (𝜑 → (0...((𝑃 − 1) + 1)) = (0...𝑃)) |
20 | 19 | eqcomd 2744 |
. . . 4
⊢ (𝜑 → (0...𝑃) = (0...((𝑃 − 1) + 1))) |
21 | 20 | mpteq1d 5169 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))) = (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) |
22 | 21 | oveq2d 7291 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))))) |
23 | | ringcmn 19820 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
24 | 1, 2, 23 | 3syl 18 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ CMnd) |
25 | | freshmansdream.1 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ ℙ) |
26 | | prmnn 16379 |
. . . . 5
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
27 | | nnm1nn0 12274 |
. . . . 5
⊢ (𝑃 ∈ ℕ → (𝑃 − 1) ∈
ℕ0) |
28 | 25, 26, 27 | 3syl 18 |
. . . 4
⊢ (𝜑 → (𝑃 − 1) ∈
ℕ0) |
29 | | ringgrp 19788 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
30 | 1, 2, 29 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
31 | 30 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Grp) |
32 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑃 ∈
ℕ0) |
33 | | fzssz 13258 |
. . . . . . . . 9
⊢
(0...((𝑃 − 1)
+ 1)) ⊆ ℤ |
34 | 33 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (0...((𝑃 − 1) + 1)) ⊆
ℤ) |
35 | 34 | sselda 3921 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℤ) |
36 | | bccl 14036 |
. . . . . . 7
⊢ ((𝑃 ∈ ℕ0
∧ 𝑖 ∈ ℤ)
→ (𝑃C𝑖) ∈
ℕ0) |
37 | 32, 35, 36 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈
ℕ0) |
38 | 37 | nn0zd 12424 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℤ) |
39 | 1, 2 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
40 | 39 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Ring) |
41 | 12 | ringmgp 19789 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
42 | 39, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
43 | 42 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) →
(mulGrp‘𝑅) ∈
Mnd) |
44 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...((𝑃 − 1) + 1))) |
45 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → (0...((𝑃 − 1) + 1)) = (0...𝑃)) |
46 | 44, 45 | eleqtrd 2841 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...𝑃)) |
47 | | fznn0sub 13288 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...𝑃) → (𝑃 − 𝑖) ∈
ℕ0) |
48 | 46, 47 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃 − 𝑖) ∈
ℕ0) |
49 | 6 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑋 ∈ 𝐵) |
50 | 12, 8 | mgpbas 19726 |
. . . . . . . 8
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
51 | 50, 13 | mulgnn0cl 18720 |
. . . . . . 7
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ (𝑃 −
𝑖) ∈
ℕ0 ∧ 𝑋
∈ 𝐵) → ((𝑃 − 𝑖) ↑ 𝑋) ∈ 𝐵) |
52 | 43, 48, 49, 51 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃 − 𝑖) ↑ 𝑋) ∈ 𝐵) |
53 | | elfznn0 13349 |
. . . . . . . 8
⊢ (𝑖 ∈ (0...((𝑃 − 1) + 1)) → 𝑖 ∈ ℕ0) |
54 | 53 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℕ0) |
55 | 7 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑌 ∈ 𝐵) |
56 | 50, 13 | mulgnn0cl 18720 |
. . . . . . 7
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑖 ∈
ℕ0 ∧ 𝑌
∈ 𝐵) → (𝑖 ↑ 𝑌) ∈ 𝐵) |
57 | 43, 54, 55, 56 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑖 ↑ 𝑌) ∈ 𝐵) |
58 | 8, 9 | ringcl 19800 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ ((𝑃 − 𝑖) ↑ 𝑋) ∈ 𝐵 ∧ (𝑖 ↑ 𝑌) ∈ 𝐵) → (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) ∈ 𝐵) |
59 | 40, 52, 57, 58 | syl3anc 1370 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) ∈ 𝐵) |
60 | 8, 10 | mulgcl 18721 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ (𝑃C𝑖) ∈ ℤ ∧ (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) ∈ 𝐵) |
61 | 31, 38, 59, 60 | syl3anc 1370 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) ∈ 𝐵) |
62 | 8, 11, 24, 28, 61 | gsummptfzsplit 19533 |
. . 3
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))))) |
63 | 30 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Grp) |
64 | | elfzelz 13256 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℤ) |
65 | 5, 64, 36 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈
ℕ0) |
66 | 65 | nn0zd 12424 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℤ) |
67 | 39 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Ring) |
68 | 67, 41 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd) |
69 | | fzssp1 13299 |
. . . . . . . . . . . 12
⊢
(0...(𝑃 − 1))
⊆ (0...((𝑃 − 1)
+ 1)) |
70 | 69, 19 | sseqtrid 3973 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...(𝑃 − 1)) ⊆ (0...𝑃)) |
71 | 70 | sselda 3921 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ (0...𝑃)) |
72 | 71, 47 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → (𝑃 − 𝑖) ∈
ℕ0) |
73 | 6 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → 𝑋 ∈ 𝐵) |
74 | 68, 72, 73, 51 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃 − 𝑖) ↑ 𝑋) ∈ 𝐵) |
75 | | elfznn0 13349 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℕ0) |
76 | 75 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ ℕ0) |
77 | 7 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → 𝑌 ∈ 𝐵) |
78 | 68, 76, 77, 56 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → (𝑖 ↑ 𝑌) ∈ 𝐵) |
79 | 67, 74, 78, 58 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) ∈ 𝐵) |
80 | 63, 66, 79, 60 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) ∈ 𝐵) |
81 | 8, 11, 24, 28, 80 | gsummptfzsplitl 19534 |
. . . . 5
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))))) |
82 | 39 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ Ring) |
83 | | prmdvdsbc 31130 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℙ ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖)) |
84 | 25, 83 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖)) |
85 | 82, 41 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd) |
86 | 5 | nn0zd 12424 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑃 ∈ ℤ) |
87 | | 1nn0 12249 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℕ0 |
88 | | eluzmn 12589 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ ℤ ∧ 1 ∈
ℕ0) → 𝑃 ∈ (ℤ≥‘(𝑃 − 1))) |
89 | 86, 87, 88 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑃 ∈ (ℤ≥‘(𝑃 − 1))) |
90 | | fzss2 13296 |
. . . . . . . . . . . . . . 15
⊢ (𝑃 ∈
(ℤ≥‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃)) |
91 | 89, 90 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (1...(𝑃 − 1)) ⊆ (1...𝑃)) |
92 | 91 | sselda 3921 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ (1...𝑃)) |
93 | | fznn0sub 13288 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...𝑃) → (𝑃 − 𝑖) ∈
ℕ0) |
94 | 92, 93 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → (𝑃 − 𝑖) ∈
ℕ0) |
95 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑋 ∈ 𝐵) |
96 | 85, 94, 95, 51 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃 − 𝑖) ↑ 𝑋) ∈ 𝐵) |
97 | | elfznn 13285 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ) |
98 | 97 | nnnn0d 12293 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ0) |
99 | 98 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ ℕ0) |
100 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑌 ∈ 𝐵) |
101 | 85, 99, 100, 56 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → (𝑖 ↑ 𝑌) ∈ 𝐵) |
102 | 82, 96, 101, 58 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) ∈ 𝐵) |
103 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(0g‘𝑅) = (0g‘𝑅) |
104 | 3, 8, 10, 103 | dvdschrmulg 31483 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑃 ∥ (𝑃C𝑖) ∧ (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) = (0g‘𝑅)) |
105 | 82, 84, 102, 104 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) = (0g‘𝑅)) |
106 | 105 | mpteq2dva 5174 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))) = (𝑖 ∈ (1...(𝑃 − 1)) ↦
(0g‘𝑅))) |
107 | 106 | oveq2d 7291 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦
(0g‘𝑅)))) |
108 | | ringmnd 19793 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
109 | 39, 108 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
110 | | ovex 7308 |
. . . . . . . 8
⊢
(1...(𝑃 − 1))
∈ V |
111 | 103 | gsumz 18474 |
. . . . . . . 8
⊢ ((𝑅 ∈ Mnd ∧ (1...(𝑃 − 1)) ∈ V) →
(𝑅
Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
112 | 109, 110,
111 | sylancl 586 |
. . . . . . 7
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦
(0g‘𝑅))) =
(0g‘𝑅)) |
113 | 107, 112 | eqtrd 2778 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = (0g‘𝑅)) |
114 | | 0nn0 12248 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
115 | 114 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℕ0) |
116 | 50, 13 | mulgnn0cl 18720 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑃 ∈
ℕ0 ∧ 𝑋
∈ 𝐵) → (𝑃 ↑ 𝑋) ∈ 𝐵) |
117 | 42, 5, 6, 116 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → (𝑃 ↑ 𝑋) ∈ 𝐵) |
118 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → 𝑖 = 0) |
119 | 118 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑃C𝑖) = (𝑃C0)) |
120 | 118 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑃 − 𝑖) = (𝑃 − 0)) |
121 | 120 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑃 − 𝑖) ↑ 𝑋) = ((𝑃 − 0) ↑ 𝑋)) |
122 | 118 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 = 0) → (𝑖 ↑ 𝑌) = (0 ↑ 𝑌)) |
123 | 121, 122 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = 0) → (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) = (((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌))) |
124 | 119, 123 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) = ((𝑃C0)(.g‘𝑅)(((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌)))) |
125 | | bcn0 14024 |
. . . . . . . . . . . 12
⊢ (𝑃 ∈ ℕ0
→ (𝑃C0) =
1) |
126 | 5, 125 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃C0) = 1) |
127 | 16 | subid1d 11321 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑃 − 0) = 𝑃) |
128 | 127 | oveq1d 7290 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑃 − 0) ↑ 𝑋) = (𝑃 ↑ 𝑋)) |
129 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑅) = (1r‘𝑅) |
130 | 12, 129 | ringidval 19739 |
. . . . . . . . . . . . . . 15
⊢
(1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
131 | 50, 130, 13 | mulg0 18707 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ 𝐵 → (0 ↑ 𝑌) = (1r‘𝑅)) |
132 | 7, 131 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0 ↑ 𝑌) = (1r‘𝑅)) |
133 | 128, 132 | oveq12d 7293 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌)) = ((𝑃 ↑ 𝑋)(.r‘𝑅)(1r‘𝑅))) |
134 | 8, 9, 129 | ringridm 19811 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝑃 ↑ 𝑋) ∈ 𝐵) → ((𝑃 ↑ 𝑋)(.r‘𝑅)(1r‘𝑅)) = (𝑃 ↑ 𝑋)) |
135 | 39, 117, 134 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃 ↑ 𝑋)(.r‘𝑅)(1r‘𝑅)) = (𝑃 ↑ 𝑋)) |
136 | 133, 135 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌)) = (𝑃 ↑ 𝑋)) |
137 | 126, 136 | oveq12d 7293 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃C0)(.g‘𝑅)(((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌))) = (1(.g‘𝑅)(𝑃 ↑ 𝑋))) |
138 | 8, 10 | mulg1 18711 |
. . . . . . . . . . 11
⊢ ((𝑃 ↑ 𝑋) ∈ 𝐵 → (1(.g‘𝑅)(𝑃 ↑ 𝑋)) = (𝑃 ↑ 𝑋)) |
139 | 117, 138 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 →
(1(.g‘𝑅)(𝑃 ↑ 𝑋)) = (𝑃 ↑ 𝑋)) |
140 | 137, 139 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑃C0)(.g‘𝑅)(((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌))) = (𝑃 ↑ 𝑋)) |
141 | 140 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑃C0)(.g‘𝑅)(((𝑃 − 0) ↑ 𝑋)(.r‘𝑅)(0 ↑ 𝑌))) = (𝑃 ↑ 𝑋)) |
142 | 124, 141 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = 0) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) = (𝑃 ↑ 𝑋)) |
143 | 8, 109, 115, 117, 142 | gsumsnd 19553 |
. . . . . 6
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = (𝑃 ↑ 𝑋)) |
144 | 113, 143 | oveq12d 7293 |
. . . . 5
⊢ (𝜑 → ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))))) = ((0g‘𝑅) + (𝑃 ↑ 𝑋))) |
145 | 8, 11, 103 | grplid 18609 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ (𝑃 ↑ 𝑋) ∈ 𝐵) → ((0g‘𝑅) + (𝑃 ↑ 𝑋)) = (𝑃 ↑ 𝑋)) |
146 | 30, 117, 145 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((0g‘𝑅)
+ (𝑃 ↑ 𝑋)) = (𝑃 ↑ 𝑋)) |
147 | 81, 144, 146 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = (𝑃 ↑ 𝑋)) |
148 | 18, 5 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → ((𝑃 − 1) + 1) ∈
ℕ0) |
149 | 50, 13 | mulgnn0cl 18720 |
. . . . . 6
⊢
(((mulGrp‘𝑅)
∈ Mnd ∧ 𝑃 ∈
ℕ0 ∧ 𝑌
∈ 𝐵) → (𝑃 ↑ 𝑌) ∈ 𝐵) |
150 | 42, 5, 7, 149 | syl3anc 1370 |
. . . . 5
⊢ (𝜑 → (𝑃 ↑ 𝑌) ∈ 𝐵) |
151 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = ((𝑃 − 1) + 1)) |
152 | 18 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 1) + 1) = 𝑃) |
153 | 151, 152 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = 𝑃) |
154 | 153 | oveq2d 7291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → (𝑃C𝑖) = (𝑃C𝑃)) |
155 | 153 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → (𝑃 − 𝑖) = (𝑃 − 𝑃)) |
156 | 155 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 𝑖) ↑ 𝑋) = ((𝑃 − 𝑃) ↑ 𝑋)) |
157 | 153 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → (𝑖 ↑ 𝑌) = (𝑃 ↑ 𝑌)) |
158 | 156, 157 | oveq12d 7293 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → (((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)) = (((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌))) |
159 | 154, 158 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) = ((𝑃C𝑃)(.g‘𝑅)(((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌)))) |
160 | | bcnn 14026 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℕ0
→ (𝑃C𝑃) = 1) |
161 | 5, 160 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃C𝑃) = 1) |
162 | 16 | subidd 11320 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑃 − 𝑃) = 0) |
163 | 162 | oveq1d 7290 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑃 − 𝑃) ↑ 𝑋) = (0 ↑ 𝑋)) |
164 | 50, 130, 13 | mulg0 18707 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) |
165 | 6, 164 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
166 | 163, 165 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑃 − 𝑃) ↑ 𝑋) = (1r‘𝑅)) |
167 | 166 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌)) = ((1r‘𝑅)(.r‘𝑅)(𝑃 ↑ 𝑌))) |
168 | 8, 9, 129 | ringlidm 19810 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑃 ↑ 𝑌) ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)(𝑃 ↑ 𝑌)) = (𝑃 ↑ 𝑌)) |
169 | 39, 150, 168 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 →
((1r‘𝑅)(.r‘𝑅)(𝑃 ↑ 𝑌)) = (𝑃 ↑ 𝑌)) |
170 | 167, 169 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌)) = (𝑃 ↑ 𝑌)) |
171 | 161, 170 | oveq12d 7293 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃C𝑃)(.g‘𝑅)(((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌))) = (1(.g‘𝑅)(𝑃 ↑ 𝑌))) |
172 | 8, 10 | mulg1 18711 |
. . . . . . . . 9
⊢ ((𝑃 ↑ 𝑌) ∈ 𝐵 → (1(.g‘𝑅)(𝑃 ↑ 𝑌)) = (𝑃 ↑ 𝑌)) |
173 | 150, 172 | syl 17 |
. . . . . . . 8
⊢ (𝜑 →
(1(.g‘𝑅)(𝑃 ↑ 𝑌)) = (𝑃 ↑ 𝑌)) |
174 | 171, 173 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝑃C𝑃)(.g‘𝑅)(((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌))) = (𝑃 ↑ 𝑌)) |
175 | 174 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑃)(.g‘𝑅)(((𝑃 − 𝑃) ↑ 𝑋)(.r‘𝑅)(𝑃 ↑ 𝑌))) = (𝑃 ↑ 𝑌)) |
176 | 159, 175 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))) = (𝑃 ↑ 𝑌)) |
177 | 8, 109, 148, 150, 176 | gsumsnd 19553 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = (𝑃 ↑ 𝑌)) |
178 | 147, 177 | oveq12d 7293 |
. . 3
⊢ (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌)))))) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) |
179 | 62, 178 | eqtrd 2778 |
. 2
⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g‘𝑅)(((𝑃 − 𝑖) ↑ 𝑋)(.r‘𝑅)(𝑖 ↑ 𝑌))))) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) |
180 | 15, 22, 179 | 3eqtrd 2782 |
1
⊢ (𝜑 → (𝑃 ↑ (𝑋 + 𝑌)) = ((𝑃 ↑ 𝑋) + (𝑃 ↑ 𝑌))) |