Step | Hyp | Ref
| Expression |
1 | | freshmansdream.r |
. . 3
β’ (π β π
β CRing) |
2 | | crngring 20061 |
. . . 4
β’ (π
β CRing β π
β Ring) |
3 | | freshmansdream.c |
. . . . 5
β’ π = (chrβπ
) |
4 | 3 | chrcl 21069 |
. . . 4
β’ (π
β Ring β π β
β0) |
5 | 1, 2, 4 | 3syl 18 |
. . 3
β’ (π β π β
β0) |
6 | | freshmansdream.x |
. . 3
β’ (π β π β π΅) |
7 | | freshmansdream.y |
. . 3
β’ (π β π β π΅) |
8 | | freshmansdream.s |
. . . 4
β’ π΅ = (Baseβπ
) |
9 | | eqid 2732 |
. . . 4
β’
(.rβπ
) = (.rβπ
) |
10 | | eqid 2732 |
. . . 4
β’
(.gβπ
) = (.gβπ
) |
11 | | freshmansdream.a |
. . . 4
β’ + =
(+gβπ
) |
12 | | eqid 2732 |
. . . 4
β’
(mulGrpβπ
) =
(mulGrpβπ
) |
13 | | freshmansdream.p |
. . . 4
β’ β =
(.gβ(mulGrpβπ
)) |
14 | 8, 9, 10, 11, 12, 13 | crngbinom 20140 |
. . 3
β’ (((π
β CRing β§ π β β0)
β§ (π β π΅ β§ π β π΅)) β (π β (π + π)) = (π
Ξ£g (π β (0...π) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))))) |
15 | 1, 5, 6, 7, 14 | syl22anc 837 |
. 2
β’ (π β (π β (π + π)) = (π
Ξ£g (π β (0...π) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))))) |
16 | 5 | nn0cnd 12530 |
. . . . . . 7
β’ (π β π β β) |
17 | | 1cnd 11205 |
. . . . . . 7
β’ (π β 1 β
β) |
18 | 16, 17 | npcand 11571 |
. . . . . 6
β’ (π β ((π β 1) + 1) = π) |
19 | 18 | oveq2d 7421 |
. . . . 5
β’ (π β (0...((π β 1) + 1)) = (0...π)) |
20 | 19 | eqcomd 2738 |
. . . 4
β’ (π β (0...π) = (0...((π β 1) + 1))) |
21 | 20 | mpteq1d 5242 |
. . 3
β’ (π β (π β (0...π) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))) = (π β (0...((π β 1) + 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) |
22 | 21 | oveq2d 7421 |
. 2
β’ (π β (π
Ξ£g (π β (0...π) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = (π
Ξ£g (π β (0...((π β 1) + 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))))) |
23 | | ringcmn 20092 |
. . . . 5
β’ (π
β Ring β π
β CMnd) |
24 | 1, 2, 23 | 3syl 18 |
. . . 4
β’ (π β π
β CMnd) |
25 | | freshmansdream.1 |
. . . . 5
β’ (π β π β β) |
26 | | prmnn 16607 |
. . . . 5
β’ (π β β β π β
β) |
27 | | nnm1nn0 12509 |
. . . . 5
β’ (π β β β (π β 1) β
β0) |
28 | 25, 26, 27 | 3syl 18 |
. . . 4
β’ (π β (π β 1) β
β0) |
29 | | ringgrp 20054 |
. . . . . . 7
β’ (π
β Ring β π
β Grp) |
30 | 1, 2, 29 | 3syl 18 |
. . . . . 6
β’ (π β π
β Grp) |
31 | 30 | adantr 481 |
. . . . 5
β’ ((π β§ π β (0...((π β 1) + 1))) β π
β Grp) |
32 | 5 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β π β
β0) |
33 | | fzssz 13499 |
. . . . . . . . 9
β’
(0...((π β 1)
+ 1)) β β€ |
34 | 33 | a1i 11 |
. . . . . . . 8
β’ (π β (0...((π β 1) + 1)) β
β€) |
35 | 34 | sselda 3981 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β π β β€) |
36 | | bccl 14278 |
. . . . . . 7
β’ ((π β β0
β§ π β β€)
β (πCπ) β
β0) |
37 | 32, 35, 36 | syl2anc 584 |
. . . . . 6
β’ ((π β§ π β (0...((π β 1) + 1))) β (πCπ) β
β0) |
38 | 37 | nn0zd 12580 |
. . . . 5
β’ ((π β§ π β (0...((π β 1) + 1))) β (πCπ) β β€) |
39 | 1, 2 | syl 17 |
. . . . . . 7
β’ (π β π
β Ring) |
40 | 39 | adantr 481 |
. . . . . 6
β’ ((π β§ π β (0...((π β 1) + 1))) β π
β Ring) |
41 | 12, 8 | mgpbas 19987 |
. . . . . . 7
β’ π΅ =
(Baseβ(mulGrpβπ
)) |
42 | 12 | ringmgp 20055 |
. . . . . . . . 9
β’ (π
β Ring β
(mulGrpβπ
) β
Mnd) |
43 | 39, 42 | syl 17 |
. . . . . . . 8
β’ (π β (mulGrpβπ
) β Mnd) |
44 | 43 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β
(mulGrpβπ
) β
Mnd) |
45 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π β (0...((π β 1) + 1))) β π β (0...((π β 1) + 1))) |
46 | 19 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0...((π β 1) + 1))) β (0...((π β 1) + 1)) = (0...π)) |
47 | 45, 46 | eleqtrd 2835 |
. . . . . . . 8
β’ ((π β§ π β (0...((π β 1) + 1))) β π β (0...π)) |
48 | | fznn0sub 13529 |
. . . . . . . 8
β’ (π β (0...π) β (π β π) β
β0) |
49 | 47, 48 | syl 17 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β (π β π) β
β0) |
50 | 6 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β π β π΅) |
51 | 41, 13, 44, 49, 50 | mulgnn0cld 18969 |
. . . . . 6
β’ ((π β§ π β (0...((π β 1) + 1))) β ((π β π) β π) β π΅) |
52 | | elfznn0 13590 |
. . . . . . . 8
β’ (π β (0...((π β 1) + 1)) β π β β0) |
53 | 52 | adantl 482 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β π β β0) |
54 | 7 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0...((π β 1) + 1))) β π β π΅) |
55 | 41, 13, 44, 53, 54 | mulgnn0cld 18969 |
. . . . . 6
β’ ((π β§ π β (0...((π β 1) + 1))) β (π β π) β π΅) |
56 | 8, 9 | ringcl 20066 |
. . . . . 6
β’ ((π
β Ring β§ ((π β π) β π) β π΅ β§ (π β π) β π΅) β (((π β π) β π)(.rβπ
)(π β π)) β π΅) |
57 | 40, 51, 55, 56 | syl3anc 1371 |
. . . . 5
β’ ((π β§ π β (0...((π β 1) + 1))) β (((π β π) β π)(.rβπ
)(π β π)) β π΅) |
58 | 8, 10 | mulgcl 18965 |
. . . . 5
β’ ((π
β Grp β§ (πCπ) β β€ β§ (((π β π) β π)(.rβπ
)(π β π)) β π΅) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) β π΅) |
59 | 31, 38, 57, 58 | syl3anc 1371 |
. . . 4
β’ ((π β§ π β (0...((π β 1) + 1))) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) β π΅) |
60 | 8, 11, 24, 28, 59 | gsummptfzsplit 19794 |
. . 3
β’ (π β (π
Ξ£g (π β (0...((π β 1) + 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = ((π
Ξ£g (π β (0...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) + (π
Ξ£g (π β {((π β 1) + 1)} β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))))) |
61 | 30 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β (0...(π β 1))) β π
β Grp) |
62 | | elfzelz 13497 |
. . . . . . . . 9
β’ (π β (0...(π β 1)) β π β β€) |
63 | 5, 62, 36 | syl2an 596 |
. . . . . . . 8
β’ ((π β§ π β (0...(π β 1))) β (πCπ) β
β0) |
64 | 63 | nn0zd 12580 |
. . . . . . 7
β’ ((π β§ π β (0...(π β 1))) β (πCπ) β β€) |
65 | 39 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π β (0...(π β 1))) β π
β Ring) |
66 | 65, 42 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π β 1))) β (mulGrpβπ
) β Mnd) |
67 | | fzssp1 13540 |
. . . . . . . . . . . 12
β’
(0...(π β 1))
β (0...((π β 1)
+ 1)) |
68 | 67, 19 | sseqtrid 4033 |
. . . . . . . . . . 11
β’ (π β (0...(π β 1)) β (0...π)) |
69 | 68 | sselda 3981 |
. . . . . . . . . 10
β’ ((π β§ π β (0...(π β 1))) β π β (0...π)) |
70 | 69, 48 | syl 17 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π β 1))) β (π β π) β
β0) |
71 | 6 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π β 1))) β π β π΅) |
72 | 41, 13, 66, 70, 71 | mulgnn0cld 18969 |
. . . . . . . 8
β’ ((π β§ π β (0...(π β 1))) β ((π β π) β π) β π΅) |
73 | | elfznn0 13590 |
. . . . . . . . . 10
β’ (π β (0...(π β 1)) β π β β0) |
74 | 73 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π β 1))) β π β β0) |
75 | 7 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π β (0...(π β 1))) β π β π΅) |
76 | 41, 13, 66, 74, 75 | mulgnn0cld 18969 |
. . . . . . . 8
β’ ((π β§ π β (0...(π β 1))) β (π β π) β π΅) |
77 | 65, 72, 76, 56 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π β (0...(π β 1))) β (((π β π) β π)(.rβπ
)(π β π)) β π΅) |
78 | 61, 64, 77, 58 | syl3anc 1371 |
. . . . . 6
β’ ((π β§ π β (0...(π β 1))) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) β π΅) |
79 | 8, 11, 24, 28, 78 | gsummptfzsplitl 19795 |
. . . . 5
β’ (π β (π
Ξ£g (π β (0...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = ((π
Ξ£g (π β (1...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) + (π
Ξ£g (π β {0} β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))))) |
80 | 39 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(π β 1))) β π
β Ring) |
81 | | prmdvdsbc 32009 |
. . . . . . . . . . 11
β’ ((π β β β§ π β (1...(π β 1))) β π β₯ (πCπ)) |
82 | 25, 81 | sylan 580 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(π β 1))) β π β₯ (πCπ)) |
83 | 80, 42 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...(π β 1))) β (mulGrpβπ
) β Mnd) |
84 | 5 | nn0zd 12580 |
. . . . . . . . . . . . . . . 16
β’ (π β π β β€) |
85 | | 1nn0 12484 |
. . . . . . . . . . . . . . . 16
β’ 1 β
β0 |
86 | | eluzmn 12825 |
. . . . . . . . . . . . . . . 16
β’ ((π β β€ β§ 1 β
β0) β π β (β€β₯β(π β 1))) |
87 | 84, 85, 86 | sylancl 586 |
. . . . . . . . . . . . . . 15
β’ (π β π β (β€β₯β(π β 1))) |
88 | | fzss2 13537 |
. . . . . . . . . . . . . . 15
β’ (π β
(β€β₯β(π β 1)) β (1...(π β 1)) β (1...π)) |
89 | 87, 88 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (1...(π β 1)) β (1...π)) |
90 | 89 | sselda 3981 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (1...(π β 1))) β π β (1...π)) |
91 | | fznn0sub 13529 |
. . . . . . . . . . . . 13
β’ (π β (1...π) β (π β π) β
β0) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...(π β 1))) β (π β π) β
β0) |
93 | 6 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...(π β 1))) β π β π΅) |
94 | 41, 13, 83, 92, 93 | mulgnn0cld 18969 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...(π β 1))) β ((π β π) β π) β π΅) |
95 | | elfznn 13526 |
. . . . . . . . . . . . . 14
β’ (π β (1...(π β 1)) β π β β) |
96 | 95 | nnnn0d 12528 |
. . . . . . . . . . . . 13
β’ (π β (1...(π β 1)) β π β β0) |
97 | 96 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...(π β 1))) β π β β0) |
98 | 7 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π β (1...(π β 1))) β π β π΅) |
99 | 41, 13, 83, 97, 98 | mulgnn0cld 18969 |
. . . . . . . . . . 11
β’ ((π β§ π β (1...(π β 1))) β (π β π) β π΅) |
100 | 80, 94, 99, 56 | syl3anc 1371 |
. . . . . . . . . 10
β’ ((π β§ π β (1...(π β 1))) β (((π β π) β π)(.rβπ
)(π β π)) β π΅) |
101 | | eqid 2732 |
. . . . . . . . . . 11
β’
(0gβπ
) = (0gβπ
) |
102 | 3, 8, 10, 101 | dvdschrmulg 32368 |
. . . . . . . . . 10
β’ ((π
β Ring β§ π β₯ (πCπ) β§ (((π β π) β π)(.rβπ
)(π β π)) β π΅) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (0gβπ
)) |
103 | 80, 82, 100, 102 | syl3anc 1371 |
. . . . . . . . 9
β’ ((π β§ π β (1...(π β 1))) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (0gβπ
)) |
104 | 103 | mpteq2dva 5247 |
. . . . . . . 8
β’ (π β (π β (1...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))) = (π β (1...(π β 1)) β¦
(0gβπ
))) |
105 | 104 | oveq2d 7421 |
. . . . . . 7
β’ (π β (π
Ξ£g (π β (1...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = (π
Ξ£g (π β (1...(π β 1)) β¦
(0gβπ
)))) |
106 | | ringmnd 20059 |
. . . . . . . . 9
β’ (π
β Ring β π
β Mnd) |
107 | 39, 106 | syl 17 |
. . . . . . . 8
β’ (π β π
β Mnd) |
108 | | ovex 7438 |
. . . . . . . 8
β’
(1...(π β 1))
β V |
109 | 101 | gsumz 18713 |
. . . . . . . 8
β’ ((π
β Mnd β§ (1...(π β 1)) β V) β
(π
Ξ£g (π β (1...(π β 1)) β¦
(0gβπ
))) =
(0gβπ
)) |
110 | 107, 108,
109 | sylancl 586 |
. . . . . . 7
β’ (π β (π
Ξ£g (π β (1...(π β 1)) β¦
(0gβπ
))) =
(0gβπ
)) |
111 | 105, 110 | eqtrd 2772 |
. . . . . 6
β’ (π β (π
Ξ£g (π β (1...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = (0gβπ
)) |
112 | | 0nn0 12483 |
. . . . . . . 8
β’ 0 β
β0 |
113 | 112 | a1i 11 |
. . . . . . 7
β’ (π β 0 β
β0) |
114 | 41, 13, 43, 5, 6 | mulgnn0cld 18969 |
. . . . . . 7
β’ (π β (π β π) β π΅) |
115 | | simpr 485 |
. . . . . . . . . 10
β’ ((π β§ π = 0) β π = 0) |
116 | 115 | oveq2d 7421 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (πCπ) = (πC0)) |
117 | 115 | oveq2d 7421 |
. . . . . . . . . . 11
β’ ((π β§ π = 0) β (π β π) = (π β 0)) |
118 | 117 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((π β§ π = 0) β ((π β π) β π) = ((π β 0) β π)) |
119 | 115 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((π β§ π = 0) β (π β π) = (0 β π)) |
120 | 118, 119 | oveq12d 7423 |
. . . . . . . . 9
β’ ((π β§ π = 0) β (((π β π) β π)(.rβπ
)(π β π)) = (((π β 0) β π)(.rβπ
)(0 β π))) |
121 | 116, 120 | oveq12d 7423 |
. . . . . . . 8
β’ ((π β§ π = 0) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = ((πC0)(.gβπ
)(((π β 0) β π)(.rβπ
)(0 β π)))) |
122 | | bcn0 14266 |
. . . . . . . . . . . 12
β’ (π β β0
β (πC0) =
1) |
123 | 5, 122 | syl 17 |
. . . . . . . . . . 11
β’ (π β (πC0) = 1) |
124 | 16 | subid1d 11556 |
. . . . . . . . . . . . . 14
β’ (π β (π β 0) = π) |
125 | 124 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ (π β ((π β 0) β π) = (π β π)) |
126 | | eqid 2732 |
. . . . . . . . . . . . . . . 16
β’
(1rβπ
) = (1rβπ
) |
127 | 12, 126 | ringidval 20000 |
. . . . . . . . . . . . . . 15
β’
(1rβπ
) = (0gβ(mulGrpβπ
)) |
128 | 41, 127, 13 | mulg0 18951 |
. . . . . . . . . . . . . 14
β’ (π β π΅ β (0 β π) = (1rβπ
)) |
129 | 7, 128 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β (0 β π) = (1rβπ
)) |
130 | 125, 129 | oveq12d 7423 |
. . . . . . . . . . . 12
β’ (π β (((π β 0) β π)(.rβπ
)(0 β π)) = ((π β π)(.rβπ
)(1rβπ
))) |
131 | 8, 9, 126 | ringridm 20080 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ (π β π) β π΅) β ((π β π)(.rβπ
)(1rβπ
)) = (π β π)) |
132 | 39, 114, 131 | syl2anc 584 |
. . . . . . . . . . . 12
β’ (π β ((π β π)(.rβπ
)(1rβπ
)) = (π β π)) |
133 | 130, 132 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (π β (((π β 0) β π)(.rβπ
)(0 β π)) = (π β π)) |
134 | 123, 133 | oveq12d 7423 |
. . . . . . . . . 10
β’ (π β ((πC0)(.gβπ
)(((π β 0) β π)(.rβπ
)(0 β π))) = (1(.gβπ
)(π β π))) |
135 | 8, 10 | mulg1 18955 |
. . . . . . . . . . 11
β’ ((π β π) β π΅ β (1(.gβπ
)(π β π)) = (π β π)) |
136 | 114, 135 | syl 17 |
. . . . . . . . . 10
β’ (π β
(1(.gβπ
)(π β π)) = (π β π)) |
137 | 134, 136 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β ((πC0)(.gβπ
)(((π β 0) β π)(.rβπ
)(0 β π))) = (π β π)) |
138 | 137 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π = 0) β ((πC0)(.gβπ
)(((π β 0) β π)(.rβπ
)(0 β π))) = (π β π)) |
139 | 121, 138 | eqtrd 2772 |
. . . . . . 7
β’ ((π β§ π = 0) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (π β π)) |
140 | 8, 107, 113, 114, 139 | gsumsnd 19814 |
. . . . . 6
β’ (π β (π
Ξ£g (π β {0} β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = (π β π)) |
141 | 111, 140 | oveq12d 7423 |
. . . . 5
β’ (π β ((π
Ξ£g (π β (1...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) + (π
Ξ£g (π β {0} β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))))) = ((0gβπ
) + (π β π))) |
142 | 8, 11, 101 | grplid 18848 |
. . . . . 6
β’ ((π
β Grp β§ (π β π) β π΅) β ((0gβπ
) + (π β π)) = (π β π)) |
143 | 30, 114, 142 | syl2anc 584 |
. . . . 5
β’ (π β
((0gβπ
)
+ (π β π)) = (π β π)) |
144 | 79, 141, 143 | 3eqtrd 2776 |
. . . 4
β’ (π β (π
Ξ£g (π β (0...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = (π β π)) |
145 | 18, 5 | eqeltrd 2833 |
. . . . 5
β’ (π β ((π β 1) + 1) β
β0) |
146 | 41, 13, 43, 5, 7 | mulgnn0cld 18969 |
. . . . 5
β’ (π β (π β π) β π΅) |
147 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π = ((π β 1) + 1)) β π = ((π β 1) + 1)) |
148 | 18 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π = ((π β 1) + 1)) β ((π β 1) + 1) = π) |
149 | 147, 148 | eqtrd 2772 |
. . . . . . . 8
β’ ((π β§ π = ((π β 1) + 1)) β π = π) |
150 | 149 | oveq2d 7421 |
. . . . . . 7
β’ ((π β§ π = ((π β 1) + 1)) β (πCπ) = (πCπ)) |
151 | 149 | oveq2d 7421 |
. . . . . . . . 9
β’ ((π β§ π = ((π β 1) + 1)) β (π β π) = (π β π)) |
152 | 151 | oveq1d 7420 |
. . . . . . . 8
β’ ((π β§ π = ((π β 1) + 1)) β ((π β π) β π) = ((π β π) β π)) |
153 | 149 | oveq1d 7420 |
. . . . . . . 8
β’ ((π β§ π = ((π β 1) + 1)) β (π β π) = (π β π)) |
154 | 152, 153 | oveq12d 7423 |
. . . . . . 7
β’ ((π β§ π = ((π β 1) + 1)) β (((π β π) β π)(.rβπ
)(π β π)) = (((π β π) β π)(.rβπ
)(π β π))) |
155 | 150, 154 | oveq12d 7423 |
. . . . . 6
β’ ((π β§ π = ((π β 1) + 1)) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))) |
156 | | bcnn 14268 |
. . . . . . . . . 10
β’ (π β β0
β (πCπ) = 1) |
157 | 5, 156 | syl 17 |
. . . . . . . . 9
β’ (π β (πCπ) = 1) |
158 | 16 | subidd 11555 |
. . . . . . . . . . . . 13
β’ (π β (π β π) = 0) |
159 | 158 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ (π β ((π β π) β π) = (0 β π)) |
160 | 41, 127, 13 | mulg0 18951 |
. . . . . . . . . . . . 13
β’ (π β π΅ β (0 β π) = (1rβπ
)) |
161 | 6, 160 | syl 17 |
. . . . . . . . . . . 12
β’ (π β (0 β π) = (1rβπ
)) |
162 | 159, 161 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (π β ((π β π) β π) = (1rβπ
)) |
163 | 162 | oveq1d 7420 |
. . . . . . . . . 10
β’ (π β (((π β π) β π)(.rβπ
)(π β π)) = ((1rβπ
)(.rβπ
)(π β π))) |
164 | 8, 9, 126 | ringlidm 20079 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ (π β π) β π΅) β ((1rβπ
)(.rβπ
)(π β π)) = (π β π)) |
165 | 39, 146, 164 | syl2anc 584 |
. . . . . . . . . 10
β’ (π β
((1rβπ
)(.rβπ
)(π β π)) = (π β π)) |
166 | 163, 165 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β (((π β π) β π)(.rβπ
)(π β π)) = (π β π)) |
167 | 157, 166 | oveq12d 7423 |
. . . . . . . 8
β’ (π β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (1(.gβπ
)(π β π))) |
168 | 8, 10 | mulg1 18955 |
. . . . . . . . 9
β’ ((π β π) β π΅ β (1(.gβπ
)(π β π)) = (π β π)) |
169 | 146, 168 | syl 17 |
. . . . . . . 8
β’ (π β
(1(.gβπ
)(π β π)) = (π β π)) |
170 | 167, 169 | eqtrd 2772 |
. . . . . . 7
β’ (π β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (π β π)) |
171 | 170 | adantr 481 |
. . . . . 6
β’ ((π β§ π = ((π β 1) + 1)) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (π β π)) |
172 | 155, 171 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π = ((π β 1) + 1)) β ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))) = (π β π)) |
173 | 8, 107, 145, 146, 172 | gsumsnd 19814 |
. . . 4
β’ (π β (π
Ξ£g (π β {((π β 1) + 1)} β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = (π β π)) |
174 | 144, 173 | oveq12d 7423 |
. . 3
β’ (π β ((π
Ξ£g (π β (0...(π β 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) + (π
Ξ£g (π β {((π β 1) + 1)} β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π)))))) = ((π β π) + (π β π))) |
175 | 60, 174 | eqtrd 2772 |
. 2
β’ (π β (π
Ξ£g (π β (0...((π β 1) + 1)) β¦ ((πCπ)(.gβπ
)(((π β π) β π)(.rβπ
)(π β π))))) = ((π β π) + (π β π))) |
176 | 15, 22, 175 | 3eqtrd 2776 |
1
β’ (π β (π β (π + π)) = ((π β π) + (π β π))) |