MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freshmansdream Structured version   Visualization version   GIF version

Theorem freshmansdream 21460
Description: For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋𝑃) + (𝑌𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
freshmansdream.s 𝐵 = (Base‘𝑅)
freshmansdream.a + = (+g𝑅)
freshmansdream.p = (.g‘(mulGrp‘𝑅))
freshmansdream.c 𝑃 = (chr‘𝑅)
freshmansdream.r (𝜑𝑅 ∈ CRing)
freshmansdream.1 (𝜑𝑃 ∈ ℙ)
freshmansdream.x (𝜑𝑋𝐵)
freshmansdream.y (𝜑𝑌𝐵)
Assertion
Ref Expression
freshmansdream (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))

Proof of Theorem freshmansdream
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 freshmansdream.r . . 3 (𝜑𝑅 ∈ CRing)
2 crngring 20130 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 freshmansdream.c . . . . 5 𝑃 = (chr‘𝑅)
43chrcl 21410 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ ℕ0)
51, 2, 43syl 18 . . 3 (𝜑𝑃 ∈ ℕ0)
6 freshmansdream.x . . 3 (𝜑𝑋𝐵)
7 freshmansdream.y . . 3 (𝜑𝑌𝐵)
8 freshmansdream.s . . . 4 𝐵 = (Base‘𝑅)
9 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
10 eqid 2729 . . . 4 (.g𝑅) = (.g𝑅)
11 freshmansdream.a . . . 4 + = (+g𝑅)
12 eqid 2729 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
13 freshmansdream.p . . . 4 = (.g‘(mulGrp‘𝑅))
148, 9, 10, 11, 12, 13crngbinom 20220 . . 3 (((𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0) ∧ (𝑋𝐵𝑌𝐵)) → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
151, 5, 6, 7, 14syl22anc 838 . 2 (𝜑 → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
165nn0cnd 12481 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
17 1cnd 11145 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
1816, 17npcand 11513 . . . . . 6 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
1918oveq2d 7385 . . . . 5 (𝜑 → (0...((𝑃 − 1) + 1)) = (0...𝑃))
2019eqcomd 2735 . . . 4 (𝜑 → (0...𝑃) = (0...((𝑃 − 1) + 1)))
2120mpteq1d 5192 . . 3 (𝜑 → (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))
2221oveq2d 7385 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
23 ringcmn 20167 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
241, 2, 233syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
25 freshmansdream.1 . . . . 5 (𝜑𝑃 ∈ ℙ)
26 prmnn 16620 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
27 nnm1nn0 12459 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2825, 26, 273syl 18 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ0)
29 ringgrp 20123 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
301, 2, 293syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
3130adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Grp)
325adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑃 ∈ ℕ0)
33 fzssz 13463 . . . . . . . . 9 (0...((𝑃 − 1) + 1)) ⊆ ℤ
3433a1i 11 . . . . . . . 8 (𝜑 → (0...((𝑃 − 1) + 1)) ⊆ ℤ)
3534sselda 3943 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℤ)
36 bccl 14263 . . . . . . 7 ((𝑃 ∈ ℕ0𝑖 ∈ ℤ) → (𝑃C𝑖) ∈ ℕ0)
3732, 35, 36syl2anc 584 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℕ0)
3837nn0zd 12531 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℤ)
391, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4039adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Ring)
4112, 8mgpbas 20030 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
4212ringmgp 20124 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4339, 42syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4443adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (mulGrp‘𝑅) ∈ Mnd)
45 simpr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...((𝑃 − 1) + 1)))
4619adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (0...((𝑃 − 1) + 1)) = (0...𝑃))
4745, 46eleqtrd 2830 . . . . . . . 8 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...𝑃))
48 fznn0sub 13493 . . . . . . . 8 (𝑖 ∈ (0...𝑃) → (𝑃𝑖) ∈ ℕ0)
4947, 48syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃𝑖) ∈ ℕ0)
506adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑋𝐵)
5141, 13, 44, 49, 50mulgnn0cld 19003 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
52 elfznn0 13557 . . . . . . . 8 (𝑖 ∈ (0...((𝑃 − 1) + 1)) → 𝑖 ∈ ℕ0)
5352adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℕ0)
547adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑌𝐵)
5541, 13, 44, 53, 54mulgnn0cld 19003 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑖 𝑌) ∈ 𝐵)
568, 9ringcl 20135 . . . . . 6 ((𝑅 ∈ Ring ∧ ((𝑃𝑖) 𝑋) ∈ 𝐵 ∧ (𝑖 𝑌) ∈ 𝐵) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
5740, 51, 55, 56syl3anc 1373 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
588, 10mulgcl 18999 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑃C𝑖) ∈ ℤ ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
5931, 38, 57, 58syl3anc 1373 . . . 4 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
608, 11, 24, 28, 59gsummptfzsplit 19838 . . 3 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
6130adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Grp)
62 elfzelz 13461 . . . . . . . . 9 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℤ)
635, 62, 36syl2an 596 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℕ0)
6463nn0zd 12531 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℤ)
6539adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Ring)
6665, 42syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
67 fzssp1 13504 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ (0...((𝑃 − 1) + 1))
6867, 19sseqtrid 3986 . . . . . . . . . . 11 (𝜑 → (0...(𝑃 − 1)) ⊆ (0...𝑃))
6968sselda 3943 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ (0...𝑃))
7069, 48syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
716adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑋𝐵)
7241, 13, 66, 70, 71mulgnn0cld 19003 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
73 elfznn0 13557 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
7473adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
757adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑌𝐵)
7641, 13, 66, 74, 75mulgnn0cld 19003 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
7765, 72, 76, 56syl3anc 1373 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
7861, 64, 77, 58syl3anc 1373 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
798, 11, 24, 28, 78gsummptfzsplitl 19839 . . . . 5 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
8039adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ Ring)
81 prmdvdsbc 16672 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8225, 81sylan 580 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8380, 42syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
845nn0zd 12531 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
85 1nn0 12434 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
86 eluzmn 12776 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8784, 85, 86sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 1)))
88 fzss2 13501 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
8987, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1...(𝑃 − 1)) ⊆ (1...𝑃))
9089sselda 3943 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ (1...𝑃))
91 fznn0sub 13493 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑃) → (𝑃𝑖) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
936adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑋𝐵)
9441, 13, 83, 92, 93mulgnn0cld 19003 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
95 elfznn 13490 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ)
9695nnnn0d 12479 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
987adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑌𝐵)
9941, 13, 83, 97, 98mulgnn0cld 19003 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
10080, 94, 99, 56syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
101 eqid 2729 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1023, 8, 10, 101dvdschrmulg 21414 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑃 ∥ (𝑃C𝑖) ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
10380, 82, 100, 102syl3anc 1373 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
104103mpteq2dva 5195 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅)))
105104oveq2d 7385 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))))
106 ringmnd 20128 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10739, 106syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
108 ovex 7402 . . . . . . . 8 (1...(𝑃 − 1)) ∈ V
109101gsumz 18739 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (1...(𝑃 − 1)) ∈ V) → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
110107, 108, 109sylancl 586 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
111105, 110eqtrd 2764 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (0g𝑅))
112 0nn0 12433 . . . . . . . 8 0 ∈ ℕ0
113112a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
11441, 13, 43, 5, 6mulgnn0cld 19003 . . . . . . 7 (𝜑 → (𝑃 𝑋) ∈ 𝐵)
115 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 = 0) → 𝑖 = 0)
116115oveq2d 7385 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑃C𝑖) = (𝑃C0))
117115oveq2d 7385 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → (𝑃𝑖) = (𝑃 − 0))
118117oveq1d 7384 . . . . . . . . . 10 ((𝜑𝑖 = 0) → ((𝑃𝑖) 𝑋) = ((𝑃 − 0) 𝑋))
119115oveq1d 7384 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (𝑖 𝑌) = (0 𝑌))
120118, 119oveq12d 7387 . . . . . . . . 9 ((𝜑𝑖 = 0) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)))
121116, 120oveq12d 7387 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))))
122 bcn0 14251 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → (𝑃C0) = 1)
1235, 122syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃C0) = 1)
12416subid1d 11498 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 0) = 𝑃)
125124oveq1d 7384 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 0) 𝑋) = (𝑃 𝑋))
126 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
12712, 126ringidval 20068 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12841, 127, 13mulg0 18982 . . . . . . . . . . . . . 14 (𝑌𝐵 → (0 𝑌) = (1r𝑅))
1297, 128syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 𝑌) = (1r𝑅))
130125, 129oveq12d 7387 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = ((𝑃 𝑋)(.r𝑅)(1r𝑅)))
1318, 9, 126ringridm 20155 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑃 𝑋) ∈ 𝐵) → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
13239, 114, 131syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
133130, 132eqtrd 2764 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = (𝑃 𝑋))
134123, 133oveq12d 7387 . . . . . . . . . 10 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (1(.g𝑅)(𝑃 𝑋)))
1358, 10mulg1 18989 . . . . . . . . . . 11 ((𝑃 𝑋) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
136114, 135syl 17 . . . . . . . . . 10 (𝜑 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
137134, 136eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
138137adantr 480 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
139121, 138eqtrd 2764 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑋))
1408, 107, 113, 114, 139gsumsnd 19858 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
141111, 140oveq12d 7387 . . . . 5 (𝜑 → ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((0g𝑅) + (𝑃 𝑋)))
1428, 11, 101grplid 18875 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑃 𝑋) ∈ 𝐵) → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14330, 114, 142syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14479, 141, 1433eqtrd 2768 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
14518, 5eqeltrd 2828 . . . . 5 (𝜑 → ((𝑃 − 1) + 1) ∈ ℕ0)
14641, 13, 43, 5, 7mulgnn0cld 19003 . . . . 5 (𝜑 → (𝑃 𝑌) ∈ 𝐵)
147 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = ((𝑃 − 1) + 1))
14818adantr 480 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 1) + 1) = 𝑃)
149147, 148eqtrd 2764 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = 𝑃)
150149oveq2d 7385 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃C𝑖) = (𝑃C𝑃))
151149oveq2d 7385 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃𝑖) = (𝑃𝑃))
152151oveq1d 7384 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃𝑖) 𝑋) = ((𝑃𝑃) 𝑋))
153149oveq1d 7384 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑖 𝑌) = (𝑃 𝑌))
154152, 153oveq12d 7387 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)))
155150, 154oveq12d 7387 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))))
156 bcnn 14253 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → (𝑃C𝑃) = 1)
1575, 156syl 17 . . . . . . . . 9 (𝜑 → (𝑃C𝑃) = 1)
15816subidd 11497 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑃) = 0)
159158oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑃) 𝑋) = (0 𝑋))
16041, 127, 13mulg0 18982 . . . . . . . . . . . . 13 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
1616, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (0 𝑋) = (1r𝑅))
162159, 161eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑃) 𝑋) = (1r𝑅))
163162oveq1d 7384 . . . . . . . . . 10 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = ((1r𝑅)(.r𝑅)(𝑃 𝑌)))
1648, 9, 126ringlidm 20154 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑃 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
16539, 146, 164syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
166163, 165eqtrd 2764 . . . . . . . . 9 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
167157, 166oveq12d 7387 . . . . . . . 8 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (1(.g𝑅)(𝑃 𝑌)))
1688, 10mulg1 18989 . . . . . . . . 9 ((𝑃 𝑌) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
169146, 168syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
170167, 169eqtrd 2764 . . . . . . 7 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
171170adantr 480 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
172155, 171eqtrd 2764 . . . . 5 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑌))
1738, 107, 145, 146, 172gsumsnd 19858 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑌))
174144, 173oveq12d 7387 . . 3 (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17560, 174eqtrd 2764 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17615, 22, 1753eqtrd 2768 1 (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045   + caddc 11047  cmin 11381  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  Ccbc 14243  cdvds 16198  cprime 16617  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379  Mndcmnd 18637  Grpcgrp 18841  .gcmg 18975  CMndccmn 19686  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  chrcchr 21387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-gsum 17381  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-cntz 19225  df-od 19434  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-chr 21391
This theorem is referenced by:  frobrhm  21461  ply1fermltlchr  22175
  Copyright terms: Public domain W3C validator