Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  freshmansdream Structured version   Visualization version   GIF version

Theorem freshmansdream 32369
Description: For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋𝑃) + (𝑌𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
freshmansdream.s 𝐵 = (Base‘𝑅)
freshmansdream.a + = (+g𝑅)
freshmansdream.p = (.g‘(mulGrp‘𝑅))
freshmansdream.c 𝑃 = (chr‘𝑅)
freshmansdream.r (𝜑𝑅 ∈ CRing)
freshmansdream.1 (𝜑𝑃 ∈ ℙ)
freshmansdream.x (𝜑𝑋𝐵)
freshmansdream.y (𝜑𝑌𝐵)
Assertion
Ref Expression
freshmansdream (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))

Proof of Theorem freshmansdream
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 freshmansdream.r . . 3 (𝜑𝑅 ∈ CRing)
2 crngring 20061 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 freshmansdream.c . . . . 5 𝑃 = (chr‘𝑅)
43chrcl 21069 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ ℕ0)
51, 2, 43syl 18 . . 3 (𝜑𝑃 ∈ ℕ0)
6 freshmansdream.x . . 3 (𝜑𝑋𝐵)
7 freshmansdream.y . . 3 (𝜑𝑌𝐵)
8 freshmansdream.s . . . 4 𝐵 = (Base‘𝑅)
9 eqid 2732 . . . 4 (.r𝑅) = (.r𝑅)
10 eqid 2732 . . . 4 (.g𝑅) = (.g𝑅)
11 freshmansdream.a . . . 4 + = (+g𝑅)
12 eqid 2732 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
13 freshmansdream.p . . . 4 = (.g‘(mulGrp‘𝑅))
148, 9, 10, 11, 12, 13crngbinom 20140 . . 3 (((𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0) ∧ (𝑋𝐵𝑌𝐵)) → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
151, 5, 6, 7, 14syl22anc 837 . 2 (𝜑 → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
165nn0cnd 12530 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
17 1cnd 11205 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
1816, 17npcand 11571 . . . . . 6 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
1918oveq2d 7421 . . . . 5 (𝜑 → (0...((𝑃 − 1) + 1)) = (0...𝑃))
2019eqcomd 2738 . . . 4 (𝜑 → (0...𝑃) = (0...((𝑃 − 1) + 1)))
2120mpteq1d 5242 . . 3 (𝜑 → (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))
2221oveq2d 7421 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
23 ringcmn 20092 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
241, 2, 233syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
25 freshmansdream.1 . . . . 5 (𝜑𝑃 ∈ ℙ)
26 prmnn 16607 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
27 nnm1nn0 12509 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2825, 26, 273syl 18 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ0)
29 ringgrp 20054 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
301, 2, 293syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
3130adantr 481 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Grp)
325adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑃 ∈ ℕ0)
33 fzssz 13499 . . . . . . . . 9 (0...((𝑃 − 1) + 1)) ⊆ ℤ
3433a1i 11 . . . . . . . 8 (𝜑 → (0...((𝑃 − 1) + 1)) ⊆ ℤ)
3534sselda 3981 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℤ)
36 bccl 14278 . . . . . . 7 ((𝑃 ∈ ℕ0𝑖 ∈ ℤ) → (𝑃C𝑖) ∈ ℕ0)
3732, 35, 36syl2anc 584 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℕ0)
3837nn0zd 12580 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℤ)
391, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4039adantr 481 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Ring)
4112, 8mgpbas 19987 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
4212ringmgp 20055 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4339, 42syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4443adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (mulGrp‘𝑅) ∈ Mnd)
45 simpr 485 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...((𝑃 − 1) + 1)))
4619adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (0...((𝑃 − 1) + 1)) = (0...𝑃))
4745, 46eleqtrd 2835 . . . . . . . 8 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...𝑃))
48 fznn0sub 13529 . . . . . . . 8 (𝑖 ∈ (0...𝑃) → (𝑃𝑖) ∈ ℕ0)
4947, 48syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃𝑖) ∈ ℕ0)
506adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑋𝐵)
5141, 13, 44, 49, 50mulgnn0cld 18969 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
52 elfznn0 13590 . . . . . . . 8 (𝑖 ∈ (0...((𝑃 − 1) + 1)) → 𝑖 ∈ ℕ0)
5352adantl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℕ0)
547adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑌𝐵)
5541, 13, 44, 53, 54mulgnn0cld 18969 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑖 𝑌) ∈ 𝐵)
568, 9ringcl 20066 . . . . . 6 ((𝑅 ∈ Ring ∧ ((𝑃𝑖) 𝑋) ∈ 𝐵 ∧ (𝑖 𝑌) ∈ 𝐵) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
5740, 51, 55, 56syl3anc 1371 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
588, 10mulgcl 18965 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑃C𝑖) ∈ ℤ ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
5931, 38, 57, 58syl3anc 1371 . . . 4 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
608, 11, 24, 28, 59gsummptfzsplit 19794 . . 3 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
6130adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Grp)
62 elfzelz 13497 . . . . . . . . 9 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℤ)
635, 62, 36syl2an 596 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℕ0)
6463nn0zd 12580 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℤ)
6539adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Ring)
6665, 42syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
67 fzssp1 13540 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ (0...((𝑃 − 1) + 1))
6867, 19sseqtrid 4033 . . . . . . . . . . 11 (𝜑 → (0...(𝑃 − 1)) ⊆ (0...𝑃))
6968sselda 3981 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ (0...𝑃))
7069, 48syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
716adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑋𝐵)
7241, 13, 66, 70, 71mulgnn0cld 18969 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
73 elfznn0 13590 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
7473adantl 482 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
757adantr 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑌𝐵)
7641, 13, 66, 74, 75mulgnn0cld 18969 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
7765, 72, 76, 56syl3anc 1371 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
7861, 64, 77, 58syl3anc 1371 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
798, 11, 24, 28, 78gsummptfzsplitl 19795 . . . . 5 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
8039adantr 481 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ Ring)
81 prmdvdsbc 32009 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8225, 81sylan 580 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8380, 42syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
845nn0zd 12580 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
85 1nn0 12484 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
86 eluzmn 12825 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8784, 85, 86sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 1)))
88 fzss2 13537 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
8987, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1...(𝑃 − 1)) ⊆ (1...𝑃))
9089sselda 3981 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ (1...𝑃))
91 fznn0sub 13529 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑃) → (𝑃𝑖) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
936adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑋𝐵)
9441, 13, 83, 92, 93mulgnn0cld 18969 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
95 elfznn 13526 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ)
9695nnnn0d 12528 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
9796adantl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
987adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑌𝐵)
9941, 13, 83, 97, 98mulgnn0cld 18969 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
10080, 94, 99, 56syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
101 eqid 2732 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1023, 8, 10, 101dvdschrmulg 32368 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑃 ∥ (𝑃C𝑖) ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
10380, 82, 100, 102syl3anc 1371 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
104103mpteq2dva 5247 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅)))
105104oveq2d 7421 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))))
106 ringmnd 20059 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10739, 106syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
108 ovex 7438 . . . . . . . 8 (1...(𝑃 − 1)) ∈ V
109101gsumz 18713 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (1...(𝑃 − 1)) ∈ V) → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
110107, 108, 109sylancl 586 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
111105, 110eqtrd 2772 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (0g𝑅))
112 0nn0 12483 . . . . . . . 8 0 ∈ ℕ0
113112a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
11441, 13, 43, 5, 6mulgnn0cld 18969 . . . . . . 7 (𝜑 → (𝑃 𝑋) ∈ 𝐵)
115 simpr 485 . . . . . . . . . 10 ((𝜑𝑖 = 0) → 𝑖 = 0)
116115oveq2d 7421 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑃C𝑖) = (𝑃C0))
117115oveq2d 7421 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → (𝑃𝑖) = (𝑃 − 0))
118117oveq1d 7420 . . . . . . . . . 10 ((𝜑𝑖 = 0) → ((𝑃𝑖) 𝑋) = ((𝑃 − 0) 𝑋))
119115oveq1d 7420 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (𝑖 𝑌) = (0 𝑌))
120118, 119oveq12d 7423 . . . . . . . . 9 ((𝜑𝑖 = 0) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)))
121116, 120oveq12d 7423 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))))
122 bcn0 14266 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → (𝑃C0) = 1)
1235, 122syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃C0) = 1)
12416subid1d 11556 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 0) = 𝑃)
125124oveq1d 7420 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 0) 𝑋) = (𝑃 𝑋))
126 eqid 2732 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
12712, 126ringidval 20000 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12841, 127, 13mulg0 18951 . . . . . . . . . . . . . 14 (𝑌𝐵 → (0 𝑌) = (1r𝑅))
1297, 128syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 𝑌) = (1r𝑅))
130125, 129oveq12d 7423 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = ((𝑃 𝑋)(.r𝑅)(1r𝑅)))
1318, 9, 126ringridm 20080 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑃 𝑋) ∈ 𝐵) → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
13239, 114, 131syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
133130, 132eqtrd 2772 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = (𝑃 𝑋))
134123, 133oveq12d 7423 . . . . . . . . . 10 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (1(.g𝑅)(𝑃 𝑋)))
1358, 10mulg1 18955 . . . . . . . . . . 11 ((𝑃 𝑋) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
136114, 135syl 17 . . . . . . . . . 10 (𝜑 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
137134, 136eqtrd 2772 . . . . . . . . 9 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
138137adantr 481 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
139121, 138eqtrd 2772 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑋))
1408, 107, 113, 114, 139gsumsnd 19814 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
141111, 140oveq12d 7423 . . . . 5 (𝜑 → ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((0g𝑅) + (𝑃 𝑋)))
1428, 11, 101grplid 18848 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑃 𝑋) ∈ 𝐵) → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14330, 114, 142syl2anc 584 . . . . 5 (𝜑 → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14479, 141, 1433eqtrd 2776 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
14518, 5eqeltrd 2833 . . . . 5 (𝜑 → ((𝑃 − 1) + 1) ∈ ℕ0)
14641, 13, 43, 5, 7mulgnn0cld 18969 . . . . 5 (𝜑 → (𝑃 𝑌) ∈ 𝐵)
147 simpr 485 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = ((𝑃 − 1) + 1))
14818adantr 481 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 1) + 1) = 𝑃)
149147, 148eqtrd 2772 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = 𝑃)
150149oveq2d 7421 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃C𝑖) = (𝑃C𝑃))
151149oveq2d 7421 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃𝑖) = (𝑃𝑃))
152151oveq1d 7420 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃𝑖) 𝑋) = ((𝑃𝑃) 𝑋))
153149oveq1d 7420 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑖 𝑌) = (𝑃 𝑌))
154152, 153oveq12d 7423 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)))
155150, 154oveq12d 7423 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))))
156 bcnn 14268 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → (𝑃C𝑃) = 1)
1575, 156syl 17 . . . . . . . . 9 (𝜑 → (𝑃C𝑃) = 1)
15816subidd 11555 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑃) = 0)
159158oveq1d 7420 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑃) 𝑋) = (0 𝑋))
16041, 127, 13mulg0 18951 . . . . . . . . . . . . 13 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
1616, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (0 𝑋) = (1r𝑅))
162159, 161eqtrd 2772 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑃) 𝑋) = (1r𝑅))
163162oveq1d 7420 . . . . . . . . . 10 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = ((1r𝑅)(.r𝑅)(𝑃 𝑌)))
1648, 9, 126ringlidm 20079 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑃 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
16539, 146, 164syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
166163, 165eqtrd 2772 . . . . . . . . 9 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
167157, 166oveq12d 7423 . . . . . . . 8 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (1(.g𝑅)(𝑃 𝑌)))
1688, 10mulg1 18955 . . . . . . . . 9 ((𝑃 𝑌) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
169146, 168syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
170167, 169eqtrd 2772 . . . . . . 7 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
171170adantr 481 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
172155, 171eqtrd 2772 . . . . 5 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑌))
1738, 107, 145, 146, 172gsumsnd 19814 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑌))
174144, 173oveq12d 7423 . . 3 (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17560, 174eqtrd 2772 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17615, 22, 1753eqtrd 2776 1 (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947  {csn 4627   class class class wbr 5147  cmpt 5230  cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  cmin 11440  cn 12208  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480  Ccbc 14258  cdvds 16193  cprime 16604  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  0gc0g 17381   Σg cgsu 17382  Mndcmnd 18621  Grpcgrp 18815  .gcmg 18944  CMndccmn 19642  mulGrpcmgp 19981  1rcur 19998  Ringcrg 20049  CRingccrg 20050  chrcchr 21042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-gsum 17384  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-cntz 19175  df-od 19390  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-srg 20003  df-ring 20051  df-cring 20052  df-chr 21046
This theorem is referenced by:  frobrhm  32370  ply1fermltlchr  32650
  Copyright terms: Public domain W3C validator