| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmolelcmf | Structured version Visualization version GIF version | ||
| Description: The primorial of a positive integer is less than or equal to the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmolelcmf | ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (lcm‘(1...𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmocl 16946 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℕ) | |
| 2 | 1 | nnzd 12495 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∈ ℤ) |
| 3 | fzssz 13426 | . . . 4 ⊢ (1...𝑁) ⊆ ℤ | |
| 4 | fzfid 13880 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 5 | 0nelfz1 13443 | . . . . 5 ⊢ 0 ∉ (1...𝑁) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 0 ∉ (1...𝑁)) |
| 7 | lcmfn0cl 16537 | . . . 4 ⊢ (((1...𝑁) ⊆ ℤ ∧ (1...𝑁) ∈ Fin ∧ 0 ∉ (1...𝑁)) → (lcm‘(1...𝑁)) ∈ ℕ) | |
| 8 | 3, 4, 6, 7 | mp3an2i 1468 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (lcm‘(1...𝑁)) ∈ ℕ) |
| 9 | 2, 8 | jca 511 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((#p‘𝑁) ∈ ℤ ∧ (lcm‘(1...𝑁)) ∈ ℕ)) |
| 10 | prmodvdslcmf 16959 | . 2 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ∥ (lcm‘(1...𝑁))) | |
| 11 | dvdsle 16221 | . 2 ⊢ (((#p‘𝑁) ∈ ℤ ∧ (lcm‘(1...𝑁)) ∈ ℕ) → ((#p‘𝑁) ∥ (lcm‘(1...𝑁)) → (#p‘𝑁) ≤ (lcm‘(1...𝑁)))) | |
| 12 | 9, 10, 11 | sylc 65 | 1 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (lcm‘(1...𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∉ wnel 3032 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 0cc0 11006 1c1 11007 ≤ cle 11147 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 ∥ cdvds 16163 lcmclcmf 16500 #pcprmo 16943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-prod 15811 df-dvds 16164 df-gcd 16406 df-lcmf 16502 df-prm 16583 df-prmo 16944 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |