MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplcm Structured version   Visualization version   GIF version

Theorem prmgaplcm 16390
Description: Alternate proof of prmgap 16389: in contrast to prmgap 16389, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prmgaplcm 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgaplcm
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 fzssz 12903 . . . . . . . 8 (1...𝑥) ⊆ ℤ
32a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ)
4 fzfi 13334 . . . . . . . 8 (1...𝑥) ∈ Fin
54a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin)
6 0nelfz1 12920 . . . . . . . 8 0 ∉ (1...𝑥)
76a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → 0 ∉ (1...𝑥))
8 lcmfn0cl 15964 . . . . . . 7 (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ)
93, 5, 7, 8syl3anc 1367 . . . . . 6 (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ)
109adantl 484 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ)
11 eqid 2821 . . . . 5 (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))
1210, 11fmptd 6872 . . . 4 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)
13 nnex 11638 . . . . . 6 ℕ ∈ V
1413, 13pm3.2i 473 . . . . 5 (ℕ ∈ V ∧ ℕ ∈ V)
15 elmapg 8413 . . . . 5 ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ))
1614, 15mp1i 13 . . . 4 (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ))
1712, 16mpbird 259 . . 3 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ))
18 prmgaplcmlem2 16382 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖))
19 eqidd 2822 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))))
20 oveq2 7158 . . . . . . . . . 10 (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛))
2120fveq2d 6668 . . . . . . . . 9 (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛)))
2221adantl 484 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛)))
23 simpl 485 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
24 fzssz 12903 . . . . . . . . . 10 (1...𝑛) ⊆ ℤ
25 fzfi 13334 . . . . . . . . . 10 (1...𝑛) ∈ Fin
2624, 25pm3.2i 473 . . . . . . . . 9 ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin)
27 lcmfcl 15966 . . . . . . . . 9 (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0)
2826, 27mp1i 13 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0)
2919, 22, 23, 28fvmptd 6769 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛)))
3029oveq1d 7165 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖))
3130oveq1d 7165 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖))
3218, 31breqtrrd 5086 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖))
3332ralrimiva 3182 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖))
341, 17, 33prmgaplem8 16388 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
3534rgen 3148 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1533  wcel 2110  wnel 3123  wral 3138  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5058  cmpt 5138  wf 6345  cfv 6349  (class class class)co 7150  m cmap 8400  Fincfn 8503  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669  cle 10670  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cz 11975  ...cfz 12886  ..^cfzo 13027   gcd cgcd 15837  lcmclcmf 15927  cprime 16009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-fac 13628  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-prod 15254  df-dvds 15602  df-gcd 15838  df-lcmf 15929  df-prm 16010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator