Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prmgaplcm | Structured version Visualization version GIF version |
Description: Alternate proof of prmgap 16858: in contrast to prmgap 16858, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prmgaplcm | ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
2 | fzssz 13360 | . . . . . . . 8 ⊢ (1...𝑥) ⊆ ℤ | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ) |
4 | fzfi 13794 | . . . . . . . 8 ⊢ (1...𝑥) ∈ Fin | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin) |
6 | 0nelfz1 13377 | . . . . . . . 8 ⊢ 0 ∉ (1...𝑥) | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 0 ∉ (1...𝑥)) |
8 | lcmfn0cl 16429 | . . . . . . 7 ⊢ (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ) | |
9 | 3, 5, 7, 8 | syl3anc 1370 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ) |
10 | 9 | adantl 482 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ) |
11 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) | |
12 | 10, 11 | fmptd 7045 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ) |
13 | nnex 12081 | . . . . . 6 ⊢ ℕ ∈ V | |
14 | 13, 13 | pm3.2i 471 | . . . . 5 ⊢ (ℕ ∈ V ∧ ℕ ∈ V) |
15 | elmapg 8700 | . . . . 5 ⊢ ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) |
17 | 12, 16 | mpbird 256 | . . 3 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ)) |
18 | prmgaplcmlem2 16851 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) | |
19 | eqidd 2737 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))) | |
20 | oveq2 7346 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛)) | |
21 | 20 | fveq2d 6830 | . . . . . . . . 9 ⊢ (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
22 | 21 | adantl 482 | . . . . . . . 8 ⊢ (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
23 | simpl 483 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ) | |
24 | fzssz 13360 | . . . . . . . . . 10 ⊢ (1...𝑛) ⊆ ℤ | |
25 | fzfi 13794 | . . . . . . . . . 10 ⊢ (1...𝑛) ∈ Fin | |
26 | 24, 25 | pm3.2i 471 | . . . . . . . . 9 ⊢ ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) |
27 | lcmfcl 16431 | . . . . . . . . 9 ⊢ (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0) | |
28 | 26, 27 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0) |
29 | 19, 22, 23, 28 | fvmptd 6939 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛))) |
30 | 29 | oveq1d 7353 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖)) |
31 | 30 | oveq1d 7353 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) |
32 | 18, 31 | breqtrrd 5121 | . . . 4 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
33 | 32 | ralrimiva 3139 | . . 3 ⊢ (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
34 | 1, 17, 33 | prmgaplem8 16857 | . 2 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) |
35 | 34 | rgen 3063 | 1 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∉ wnel 3046 ∀wral 3061 ∃wrex 3070 Vcvv 3441 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5176 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 ↑m cmap 8687 Fincfn 8805 0cc0 10973 1c1 10974 + caddc 10976 < clt 11111 ≤ cle 11112 − cmin 11307 ℕcn 12075 2c2 12130 ℕ0cn0 12335 ℤcz 12421 ...cfz 13341 ..^cfzo 13484 gcd cgcd 16301 lcmclcmf 16392 ℙcprime 16474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-inf2 9499 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-pre-sup 11051 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-2o 8369 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-sup 9300 df-inf 9301 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-div 11735 df-nn 12076 df-2 12138 df-3 12139 df-n0 12336 df-z 12422 df-uz 12685 df-rp 12833 df-fz 13342 df-fzo 13485 df-seq 13824 df-exp 13885 df-fac 14090 df-hash 14147 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 df-prod 15716 df-dvds 16064 df-gcd 16302 df-lcmf 16394 df-prm 16475 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |