MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplcm Structured version   Visualization version   GIF version

Theorem prmgaplcm 16972
Description: Alternate proof of prmgap 16971: in contrast to prmgap 16971, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prmgaplcm 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgaplcm
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 fzssz 13426 . . . . . . . 8 (1...𝑥) ⊆ ℤ
32a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ)
4 fzfi 13879 . . . . . . . 8 (1...𝑥) ∈ Fin
54a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin)
6 0nelfz1 13443 . . . . . . . 8 0 ∉ (1...𝑥)
76a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → 0 ∉ (1...𝑥))
8 lcmfn0cl 16537 . . . . . . 7 (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ)
93, 5, 7, 8syl3anc 1373 . . . . . 6 (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ)
109adantl 481 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ)
11 eqid 2731 . . . . 5 (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))
1210, 11fmptd 7047 . . . 4 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)
13 nnex 12131 . . . . . 6 ℕ ∈ V
1413, 13pm3.2i 470 . . . . 5 (ℕ ∈ V ∧ ℕ ∈ V)
15 elmapg 8763 . . . . 5 ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ))
1614, 15mp1i 13 . . . 4 (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ))
1712, 16mpbird 257 . . 3 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ))
18 prmgaplcmlem2 16964 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖))
19 eqidd 2732 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))))
20 oveq2 7354 . . . . . . . . . 10 (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛))
2120fveq2d 6826 . . . . . . . . 9 (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛)))
2221adantl 481 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛)))
23 simpl 482 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
24 fzssz 13426 . . . . . . . . . 10 (1...𝑛) ⊆ ℤ
25 fzfi 13879 . . . . . . . . . 10 (1...𝑛) ∈ Fin
2624, 25pm3.2i 470 . . . . . . . . 9 ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin)
27 lcmfcl 16539 . . . . . . . . 9 (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0)
2826, 27mp1i 13 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0)
2919, 22, 23, 28fvmptd 6936 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛)))
3029oveq1d 7361 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖))
3130oveq1d 7361 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖))
3218, 31breqtrrd 5117 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖))
3332ralrimiva 3124 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖))
341, 17, 33prmgaplem8 16970 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
3534rgen 3049 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wnel 3032  wral 3047  wrex 3056  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  ...cfz 13407  ..^cfzo 13554   gcd cgcd 16405  lcmclcmf 16500  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-fac 14181  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811  df-dvds 16164  df-gcd 16406  df-lcmf 16502  df-prm 16583
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator