MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmgaplcm Structured version   Visualization version   GIF version

Theorem prmgaplcm 16097
Description: Alternate proof of prmgap 16096: in contrast to prmgap 16096, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
prmgaplcm 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Distinct variable group:   𝑛,𝑝,𝑞,𝑧

Proof of Theorem prmgaplcm
Dummy variables 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
2 fzssz 12597 . . . . . . . 8 (1...𝑥) ⊆ ℤ
32a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ)
4 fzfi 13026 . . . . . . . 8 (1...𝑥) ∈ Fin
54a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin)
6 0nelfz1 12614 . . . . . . . 8 0 ∉ (1...𝑥)
76a1i 11 . . . . . . 7 (𝑥 ∈ ℕ → 0 ∉ (1...𝑥))
8 lcmfn0cl 15674 . . . . . . 7 (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ)
93, 5, 7, 8syl3anc 1491 . . . . . 6 (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ)
109adantl 474 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ)
11 eqid 2799 . . . . 5 (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))
1210, 11fmptd 6610 . . . 4 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)
13 nnex 11319 . . . . . 6 ℕ ∈ V
1413, 13pm3.2i 463 . . . . 5 (ℕ ∈ V ∧ ℕ ∈ V)
15 elmapg 8108 . . . . 5 ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ))
1614, 15mp1i 13 . . . 4 (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ))
1712, 16mpbird 249 . . 3 (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ))
18 prmgaplcmlem2 16089 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖))
19 eqidd 2800 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))))
20 oveq2 6886 . . . . . . . . . 10 (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛))
2120fveq2d 6415 . . . . . . . . 9 (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛)))
2221adantl 474 . . . . . . . 8 (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛)))
23 simpl 475 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ)
24 fzssz 12597 . . . . . . . . . 10 (1...𝑛) ⊆ ℤ
25 fzfi 13026 . . . . . . . . . 10 (1...𝑛) ∈ Fin
2624, 25pm3.2i 463 . . . . . . . . 9 ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin)
27 lcmfcl 15676 . . . . . . . . 9 (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0)
2826, 27mp1i 13 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0)
2919, 22, 23, 28fvmptd 6513 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛)))
3029oveq1d 6893 . . . . . 6 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖))
3130oveq1d 6893 . . . . 5 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖))
3218, 31breqtrrd 4871 . . . 4 ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖))
3332ralrimiva 3147 . . 3 (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖))
341, 17, 33prmgaplem8 16095 . 2 (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ))
3534rgen 3103 1 𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 385   = wceq 1653  wcel 2157  wnel 3074  wral 3089  wrex 3090  Vcvv 3385  wss 3769   class class class wbr 4843  cmpt 4922  wf 6097  cfv 6101  (class class class)co 6878  𝑚 cmap 8095  Fincfn 8195  0cc0 10224  1c1 10225   + caddc 10227   < clt 10363  cle 10364  cmin 10556  cn 11312  2c2 11368  0cn0 11580  cz 11666  ...cfz 12580  ..^cfzo 12720   gcd cgcd 15551  lcmclcmf 15637  cprime 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-fz 12581  df-fzo 12721  df-seq 13056  df-exp 13115  df-fac 13314  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-prod 14973  df-dvds 15320  df-gcd 15552  df-lcmf 15639  df-prm 15720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator