![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmgaplcm | Structured version Visualization version GIF version |
Description: Alternate proof of prmgap 16096: in contrast to prmgap 16096, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prmgaplcm | ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
2 | fzssz 12597 | . . . . . . . 8 ⊢ (1...𝑥) ⊆ ℤ | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ) |
4 | fzfi 13026 | . . . . . . . 8 ⊢ (1...𝑥) ∈ Fin | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin) |
6 | 0nelfz1 12614 | . . . . . . . 8 ⊢ 0 ∉ (1...𝑥) | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 0 ∉ (1...𝑥)) |
8 | lcmfn0cl 15674 | . . . . . . 7 ⊢ (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ) | |
9 | 3, 5, 7, 8 | syl3anc 1491 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ) |
10 | 9 | adantl 474 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ) |
11 | eqid 2799 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) | |
12 | 10, 11 | fmptd 6610 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ) |
13 | nnex 11319 | . . . . . 6 ⊢ ℕ ∈ V | |
14 | 13, 13 | pm3.2i 463 | . . . . 5 ⊢ (ℕ ∈ V ∧ ℕ ∈ V) |
15 | elmapg 8108 | . . . . 5 ⊢ ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) | |
16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) |
17 | 12, 16 | mpbird 249 | . . 3 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑𝑚 ℕ)) |
18 | prmgaplcmlem2 16089 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) | |
19 | eqidd 2800 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))) | |
20 | oveq2 6886 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛)) | |
21 | 20 | fveq2d 6415 | . . . . . . . . 9 ⊢ (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
22 | 21 | adantl 474 | . . . . . . . 8 ⊢ (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
23 | simpl 475 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ) | |
24 | fzssz 12597 | . . . . . . . . . 10 ⊢ (1...𝑛) ⊆ ℤ | |
25 | fzfi 13026 | . . . . . . . . . 10 ⊢ (1...𝑛) ∈ Fin | |
26 | 24, 25 | pm3.2i 463 | . . . . . . . . 9 ⊢ ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) |
27 | lcmfcl 15676 | . . . . . . . . 9 ⊢ (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0) | |
28 | 26, 27 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0) |
29 | 19, 22, 23, 28 | fvmptd 6513 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛))) |
30 | 29 | oveq1d 6893 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖)) |
31 | 30 | oveq1d 6893 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) |
32 | 18, 31 | breqtrrd 4871 | . . . 4 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
33 | 32 | ralrimiva 3147 | . . 3 ⊢ (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
34 | 1, 17, 33 | prmgaplem8 16095 | . 2 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) |
35 | 34 | rgen 3103 | 1 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∉ wnel 3074 ∀wral 3089 ∃wrex 3090 Vcvv 3385 ⊆ wss 3769 class class class wbr 4843 ↦ cmpt 4922 ⟶wf 6097 ‘cfv 6101 (class class class)co 6878 ↑𝑚 cmap 8095 Fincfn 8195 0cc0 10224 1c1 10225 + caddc 10227 < clt 10363 ≤ cle 10364 − cmin 10556 ℕcn 11312 2c2 11368 ℕ0cn0 11580 ℤcz 11666 ...cfz 12580 ..^cfzo 12720 gcd cgcd 15551 lcmclcmf 15637 ℙcprime 15719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-fz 12581 df-fzo 12721 df-seq 13056 df-exp 13115 df-fac 13314 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-prod 14973 df-dvds 15320 df-gcd 15552 df-lcmf 15639 df-prm 15720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |