| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmgaplcm | Structured version Visualization version GIF version | ||
| Description: Alternate proof of prmgap 17006: in contrast to prmgap 17006, where the gap starts at n! , the factorial of n, the gap starts at the least common multiple of all positive integers less than or equal to n. (Contributed by AV, 13-Aug-2020.) (Revised by AV, 27-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| prmgaplcm | ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
| 2 | fzssz 13463 | . . . . . . . 8 ⊢ (1...𝑥) ⊆ ℤ | |
| 3 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ⊆ ℤ) |
| 4 | fzfi 13913 | . . . . . . . 8 ⊢ (1...𝑥) ∈ Fin | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → (1...𝑥) ∈ Fin) |
| 6 | 0nelfz1 13480 | . . . . . . . 8 ⊢ 0 ∉ (1...𝑥) | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ → 0 ∉ (1...𝑥)) |
| 8 | lcmfn0cl 16572 | . . . . . . 7 ⊢ (((1...𝑥) ⊆ ℤ ∧ (1...𝑥) ∈ Fin ∧ 0 ∉ (1...𝑥)) → (lcm‘(1...𝑥)) ∈ ℕ) | |
| 9 | 3, 5, 7, 8 | syl3anc 1373 | . . . . . 6 ⊢ (𝑥 ∈ ℕ → (lcm‘(1...𝑥)) ∈ ℕ) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (lcm‘(1...𝑥)) ∈ ℕ) |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) | |
| 12 | 10, 11 | fmptd 7068 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ) |
| 13 | nnex 12168 | . . . . . 6 ⊢ ℕ ∈ V | |
| 14 | 13, 13 | pm3.2i 470 | . . . . 5 ⊢ (ℕ ∈ V ∧ ℕ ∈ V) |
| 15 | elmapg 8789 | . . . . 5 ⊢ ((ℕ ∈ V ∧ ℕ ∈ V) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) | |
| 16 | 14, 15 | mp1i 13 | . . . 4 ⊢ (𝑛 ∈ ℕ → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ) ↔ (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))):ℕ⟶ℕ)) |
| 17 | 12, 16 | mpbird 257 | . . 3 ⊢ (𝑛 ∈ ℕ → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) ∈ (ℕ ↑m ℕ)) |
| 18 | prmgaplcmlem2 16999 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) | |
| 19 | eqidd 2730 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥))) = (𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))) | |
| 20 | oveq2 7377 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑛 → (1...𝑥) = (1...𝑛)) | |
| 21 | 20 | fveq2d 6844 | . . . . . . . . 9 ⊢ (𝑥 = 𝑛 → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
| 22 | 21 | adantl 481 | . . . . . . . 8 ⊢ (((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) ∧ 𝑥 = 𝑛) → (lcm‘(1...𝑥)) = (lcm‘(1...𝑛))) |
| 23 | simpl 482 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 𝑛 ∈ ℕ) | |
| 24 | fzssz 13463 | . . . . . . . . . 10 ⊢ (1...𝑛) ⊆ ℤ | |
| 25 | fzfi 13913 | . . . . . . . . . 10 ⊢ (1...𝑛) ∈ Fin | |
| 26 | 24, 25 | pm3.2i 470 | . . . . . . . . 9 ⊢ ((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) |
| 27 | lcmfcl 16574 | . . . . . . . . 9 ⊢ (((1...𝑛) ⊆ ℤ ∧ (1...𝑛) ∈ Fin) → (lcm‘(1...𝑛)) ∈ ℕ0) | |
| 28 | 26, 27 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (lcm‘(1...𝑛)) ∈ ℕ0) |
| 29 | 19, 22, 23, 28 | fvmptd 6957 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) = (lcm‘(1...𝑛))) |
| 30 | 29 | oveq1d 7384 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → (((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) = ((lcm‘(1...𝑛)) + 𝑖)) |
| 31 | 30 | oveq1d 7384 | . . . . 5 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖) = (((lcm‘(1...𝑛)) + 𝑖) gcd 𝑖)) |
| 32 | 18, 31 | breqtrrd 5130 | . . . 4 ⊢ ((𝑛 ∈ ℕ ∧ 𝑖 ∈ (2...𝑛)) → 1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
| 33 | 32 | ralrimiva 3125 | . . 3 ⊢ (𝑛 ∈ ℕ → ∀𝑖 ∈ (2...𝑛)1 < ((((𝑥 ∈ ℕ ↦ (lcm‘(1...𝑥)))‘𝑛) + 𝑖) gcd 𝑖)) |
| 34 | 1, 17, 33 | prmgaplem8 17005 | . 2 ⊢ (𝑛 ∈ ℕ → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ)) |
| 35 | 34 | rgen 3046 | 1 ⊢ ∀𝑛 ∈ ℕ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑛 ≤ (𝑞 − 𝑝) ∧ ∀𝑧 ∈ ((𝑝 + 1)..^𝑞)𝑧 ∉ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ↦ cmpt 5183 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 0cc0 11044 1c1 11045 + caddc 11047 < clt 11184 ≤ cle 11185 − cmin 11381 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ℤcz 12505 ...cfz 13444 ..^cfzo 13591 gcd cgcd 16440 lcmclcmf 16535 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-fac 14215 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-prod 15846 df-dvds 16199 df-gcd 16441 df-lcmf 16537 df-prm 16618 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |