Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsprod Structured version   Visualization version   GIF version

Theorem vtsprod 34638
Description: Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsprod.s (𝜑𝑆 ∈ ℕ0)
vtsprod.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
vtsprod (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎,𝑐,𝑚   𝑁,𝑎,𝑐,𝑚   𝑆,𝑎,𝑐,𝑚   𝑋,𝑎,𝑐,𝑚   𝜑,𝑎,𝑐,𝑚

Proof of Theorem vtsprod
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 vtsprod.s . . 3 (𝜑𝑆 ∈ ℕ0)
3 ax-icn 11145 . . . . . . 7 i ∈ ℂ
43a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5 2cnd 12275 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
6 picn 26374 . . . . . . . 8 π ∈ ℂ
76a1i 11 . . . . . . 7 (𝜑 → π ∈ ℂ)
85, 7mulcld 11212 . . . . . 6 (𝜑 → (2 · π) ∈ ℂ)
94, 8mulcld 11212 . . . . 5 (𝜑 → (i · (2 · π)) ∈ ℂ)
10 vtsval.x . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10mulcld 11212 . . . 4 (𝜑 → ((i · (2 · π)) · 𝑋) ∈ ℂ)
1211efcld 16056 . . 3 (𝜑 → (exp‘((i · (2 · π)) · 𝑋)) ∈ ℂ)
13 vtsprod.l . . 3 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
141, 2, 12, 13breprexp 34632 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
151adantr 480 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1610adantr 480 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑋 ∈ ℂ)
1713ffvelcdmda 7063 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎) ∈ (ℂ ↑m ℕ))
18 elmapi 8826 . . . . . 6 ((𝐿𝑎) ∈ (ℂ ↑m ℕ) → (𝐿𝑎):ℕ⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎):ℕ⟶ℂ)
2015, 16, 19vtsval 34636 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))))
21 fzssz 13500 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
2321, 22sselid 3952 . . . . . . . . . 10 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
2423zcnd 12655 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℂ)
259ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (i · (2 · π)) ∈ ℂ)
2616adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
2724, 25, 26mul12d 11401 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑏 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑏 · 𝑋)))
2827fveq2d 6869 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑏 · 𝑋))))
2911ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
30 efexp 16076 . . . . . . . 8 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑏 ∈ ℤ) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3129, 23, 30syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3228, 31eqtr3d 2767 . . . . . 6 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘((i · (2 · π)) · (𝑏 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3332oveq2d 7410 . . . . 5 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = (((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3433sumeq2dv 15675 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3520, 34eqtrd 2765 . . 3 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3635prodeq2dv 15895 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
37 fzssz 13500 . . . . . . . . . . 11 (0...(𝑆 · 𝑁)) ⊆ ℤ
38 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3937, 38sselid 3952 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
4039adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
4140zcnd 12655 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℂ)
429ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (i · (2 · π)) ∈ ℂ)
4310ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑋 ∈ ℂ)
4441, 42, 43mul12d 11401 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑚 · 𝑋)))
4544fveq2d 6869 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))
4611ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
47 efexp 16076 . . . . . . 7 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑚 ∈ ℤ) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4846, 40, 47syl2anc 584 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4945, 48eqtr3d 2767 . . . . 5 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
5049oveq2d 7410 . . . 4 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5150sumeq2dv 15675 . . 3 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5251sumeq2dv 15675 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5314, 36, 523eqtr4d 2775 1 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6515  cfv 6519  (class class class)co 7394  m cmap 8803  cc 11084  0cc0 11086  1c1 11087  ici 11088   · cmul 11091  cn 12197  2c2 12252  0cn0 12458  cz 12545  ...cfz 13481  ..^cfzo 13628  cexp 14036  Σcsu 15659  cprod 15876  expce 16034  πcpi 16039  reprcrepr 34607  vtscvts 34634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164  ax-addf 11165
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-disj 5083  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7660  df-om 7851  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-er 8682  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9331  df-fi 9380  df-sup 9411  df-inf 9412  df-oi 9481  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-ioo 13323  df-ioc 13324  df-ico 13325  df-icc 13326  df-fz 13482  df-fzo 13629  df-fl 13766  df-seq 13977  df-exp 14037  df-fac 14249  df-bc 14278  df-hash 14306  df-shft 15043  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-prod 15877  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25774  df-dv 25775  df-repr 34608  df-vts 34635
This theorem is referenced by:  circlemeth  34639
  Copyright terms: Public domain W3C validator