Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsprod Structured version   Visualization version   GIF version

Theorem vtsprod 32285
Description: Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsprod.s (𝜑𝑆 ∈ ℕ0)
vtsprod.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
vtsprod (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎,𝑐,𝑚   𝑁,𝑎,𝑐,𝑚   𝑆,𝑎,𝑐,𝑚   𝑋,𝑎,𝑐,𝑚   𝜑,𝑎,𝑐,𝑚

Proof of Theorem vtsprod
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 vtsprod.s . . 3 (𝜑𝑆 ∈ ℕ0)
3 ax-icn 10753 . . . . . . 7 i ∈ ℂ
43a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5 2cnd 11873 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
6 picn 25303 . . . . . . . 8 π ∈ ℂ
76a1i 11 . . . . . . 7 (𝜑 → π ∈ ℂ)
85, 7mulcld 10818 . . . . . 6 (𝜑 → (2 · π) ∈ ℂ)
94, 8mulcld 10818 . . . . 5 (𝜑 → (i · (2 · π)) ∈ ℂ)
10 vtsval.x . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10mulcld 10818 . . . 4 (𝜑 → ((i · (2 · π)) · 𝑋) ∈ ℂ)
1211efcld 32237 . . 3 (𝜑 → (exp‘((i · (2 · π)) · 𝑋)) ∈ ℂ)
13 vtsprod.l . . 3 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
141, 2, 12, 13breprexp 32279 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
151adantr 484 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1610adantr 484 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑋 ∈ ℂ)
1713ffvelrnda 6882 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎) ∈ (ℂ ↑m ℕ))
18 elmapi 8508 . . . . . 6 ((𝐿𝑎) ∈ (ℂ ↑m ℕ) → (𝐿𝑎):ℕ⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎):ℕ⟶ℂ)
2015, 16, 19vtsval 32283 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))))
21 fzssz 13079 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
22 simpr 488 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
2321, 22sseldi 3885 . . . . . . . . . 10 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
2423zcnd 12248 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℂ)
259ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (i · (2 · π)) ∈ ℂ)
2616adantr 484 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
2724, 25, 26mul12d 11006 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑏 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑏 · 𝑋)))
2827fveq2d 6699 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑏 · 𝑋))))
2911ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
30 efexp 15625 . . . . . . . 8 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑏 ∈ ℤ) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3129, 23, 30syl2anc 587 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3228, 31eqtr3d 2773 . . . . . 6 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘((i · (2 · π)) · (𝑏 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3332oveq2d 7207 . . . . 5 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = (((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3433sumeq2dv 15232 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3520, 34eqtrd 2771 . . 3 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3635prodeq2dv 15448 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
37 fzssz 13079 . . . . . . . . . . 11 (0...(𝑆 · 𝑁)) ⊆ ℤ
38 simpr 488 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3937, 38sseldi 3885 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
4039adantr 484 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
4140zcnd 12248 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℂ)
429ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (i · (2 · π)) ∈ ℂ)
4310ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑋 ∈ ℂ)
4441, 42, 43mul12d 11006 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑚 · 𝑋)))
4544fveq2d 6699 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))
4611ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
47 efexp 15625 . . . . . . 7 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑚 ∈ ℤ) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4846, 40, 47syl2anc 587 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4945, 48eqtr3d 2773 . . . . 5 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
5049oveq2d 7207 . . . 4 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5150sumeq2dv 15232 . . 3 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5251sumeq2dv 15232 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5314, 36, 523eqtr4d 2781 1 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wf 6354  cfv 6358  (class class class)co 7191  m cmap 8486  cc 10692  0cc0 10694  1c1 10695  ici 10696   · cmul 10699  cn 11795  2c2 11850  0cn0 12055  cz 12141  ...cfz 13060  ..^cfzo 13203  cexp 13600  Σcsu 15214  cprod 15430  expce 15586  πcpi 15591  reprcrepr 32254  vtscvts 32281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-disj 5005  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-prod 15431  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718  df-repr 32255  df-vts 32282
This theorem is referenced by:  circlemeth  32286
  Copyright terms: Public domain W3C validator