Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsprod Structured version   Visualization version   GIF version

Theorem vtsprod 34623
Description: Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsprod.s (𝜑𝑆 ∈ ℕ0)
vtsprod.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
vtsprod (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎,𝑐,𝑚   𝑁,𝑎,𝑐,𝑚   𝑆,𝑎,𝑐,𝑚   𝑋,𝑎,𝑐,𝑚   𝜑,𝑎,𝑐,𝑚

Proof of Theorem vtsprod
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 vtsprod.s . . 3 (𝜑𝑆 ∈ ℕ0)
3 ax-icn 11103 . . . . . . 7 i ∈ ℂ
43a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5 2cnd 12240 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
6 picn 26400 . . . . . . . 8 π ∈ ℂ
76a1i 11 . . . . . . 7 (𝜑 → π ∈ ℂ)
85, 7mulcld 11170 . . . . . 6 (𝜑 → (2 · π) ∈ ℂ)
94, 8mulcld 11170 . . . . 5 (𝜑 → (i · (2 · π)) ∈ ℂ)
10 vtsval.x . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10mulcld 11170 . . . 4 (𝜑 → ((i · (2 · π)) · 𝑋) ∈ ℂ)
1211efcld 16025 . . 3 (𝜑 → (exp‘((i · (2 · π)) · 𝑋)) ∈ ℂ)
13 vtsprod.l . . 3 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
141, 2, 12, 13breprexp 34617 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
151adantr 480 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1610adantr 480 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑋 ∈ ℂ)
1713ffvelcdmda 7038 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎) ∈ (ℂ ↑m ℕ))
18 elmapi 8799 . . . . . 6 ((𝐿𝑎) ∈ (ℂ ↑m ℕ) → (𝐿𝑎):ℕ⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎):ℕ⟶ℂ)
2015, 16, 19vtsval 34621 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))))
21 fzssz 13463 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
2321, 22sselid 3941 . . . . . . . . . 10 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
2423zcnd 12615 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℂ)
259ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (i · (2 · π)) ∈ ℂ)
2616adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
2724, 25, 26mul12d 11359 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑏 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑏 · 𝑋)))
2827fveq2d 6844 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑏 · 𝑋))))
2911ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
30 efexp 16045 . . . . . . . 8 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑏 ∈ ℤ) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3129, 23, 30syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3228, 31eqtr3d 2766 . . . . . 6 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘((i · (2 · π)) · (𝑏 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3332oveq2d 7385 . . . . 5 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = (((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3433sumeq2dv 15644 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3520, 34eqtrd 2764 . . 3 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3635prodeq2dv 15864 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
37 fzssz 13463 . . . . . . . . . . 11 (0...(𝑆 · 𝑁)) ⊆ ℤ
38 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3937, 38sselid 3941 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
4039adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
4140zcnd 12615 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℂ)
429ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (i · (2 · π)) ∈ ℂ)
4310ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑋 ∈ ℂ)
4441, 42, 43mul12d 11359 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑚 · 𝑋)))
4544fveq2d 6844 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))
4611ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
47 efexp 16045 . . . . . . 7 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑚 ∈ ℤ) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4846, 40, 47syl2anc 584 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4945, 48eqtr3d 2766 . . . . 5 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
5049oveq2d 7385 . . . 4 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5150sumeq2dv 15644 . . 3 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5251sumeq2dv 15644 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5314, 36, 523eqtr4d 2774 1 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cc 11042  0cc0 11044  1c1 11045  ici 11046   · cmul 11049  cn 12162  2c2 12217  0cn0 12418  cz 12505  ...cfz 13444  ..^cfzo 13591  cexp 14002  Σcsu 15628  cprod 15845  expce 16003  πcpi 16008  reprcrepr 34592  vtscvts 34619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-prod 15846  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-repr 34593  df-vts 34620
This theorem is referenced by:  circlemeth  34624
  Copyright terms: Public domain W3C validator