Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsprod Structured version   Visualization version   GIF version

Theorem vtsprod 34441
Description: Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsprod.s (𝜑𝑆 ∈ ℕ0)
vtsprod.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
vtsprod (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎,𝑐,𝑚   𝑁,𝑎,𝑐,𝑚   𝑆,𝑎,𝑐,𝑚   𝑋,𝑎,𝑐,𝑚   𝜑,𝑎,𝑐,𝑚

Proof of Theorem vtsprod
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 vtsprod.s . . 3 (𝜑𝑆 ∈ ℕ0)
3 ax-icn 11213 . . . . . . 7 i ∈ ℂ
43a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5 2cnd 12337 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
6 picn 26479 . . . . . . . 8 π ∈ ℂ
76a1i 11 . . . . . . 7 (𝜑 → π ∈ ℂ)
85, 7mulcld 11280 . . . . . 6 (𝜑 → (2 · π) ∈ ℂ)
94, 8mulcld 11280 . . . . 5 (𝜑 → (i · (2 · π)) ∈ ℂ)
10 vtsval.x . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10mulcld 11280 . . . 4 (𝜑 → ((i · (2 · π)) · 𝑋) ∈ ℂ)
1211efcld 16080 . . 3 (𝜑 → (exp‘((i · (2 · π)) · 𝑋)) ∈ ℂ)
13 vtsprod.l . . 3 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
141, 2, 12, 13breprexp 34435 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
151adantr 479 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1610adantr 479 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑋 ∈ ℂ)
1713ffvelcdmda 7097 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎) ∈ (ℂ ↑m ℕ))
18 elmapi 8877 . . . . . 6 ((𝐿𝑎) ∈ (ℂ ↑m ℕ) → (𝐿𝑎):ℕ⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎):ℕ⟶ℂ)
2015, 16, 19vtsval 34439 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))))
21 fzssz 13552 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
22 simpr 483 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
2321, 22sselid 3976 . . . . . . . . . 10 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
2423zcnd 12714 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℂ)
259ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (i · (2 · π)) ∈ ℂ)
2616adantr 479 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
2724, 25, 26mul12d 11469 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑏 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑏 · 𝑋)))
2827fveq2d 6904 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑏 · 𝑋))))
2911ad2antrr 724 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
30 efexp 16098 . . . . . . . 8 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑏 ∈ ℤ) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3129, 23, 30syl2anc 582 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3228, 31eqtr3d 2767 . . . . . 6 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘((i · (2 · π)) · (𝑏 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3332oveq2d 7439 . . . . 5 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = (((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3433sumeq2dv 15702 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3520, 34eqtrd 2765 . . 3 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3635prodeq2dv 15920 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
37 fzssz 13552 . . . . . . . . . . 11 (0...(𝑆 · 𝑁)) ⊆ ℤ
38 simpr 483 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3937, 38sselid 3976 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
4039adantr 479 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
4140zcnd 12714 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℂ)
429ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (i · (2 · π)) ∈ ℂ)
4310ad2antrr 724 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑋 ∈ ℂ)
4441, 42, 43mul12d 11469 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑚 · 𝑋)))
4544fveq2d 6904 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))
4611ad2antrr 724 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
47 efexp 16098 . . . . . . 7 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑚 ∈ ℤ) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4846, 40, 47syl2anc 582 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4945, 48eqtr3d 2767 . . . . 5 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
5049oveq2d 7439 . . . 4 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5150sumeq2dv 15702 . . 3 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5251sumeq2dv 15702 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5314, 36, 523eqtr4d 2775 1 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wf 6549  cfv 6553  (class class class)co 7423  m cmap 8854  cc 11152  0cc0 11154  1c1 11155  ici 11156   · cmul 11159  cn 12259  2c2 12314  0cn0 12519  cz 12605  ...cfz 13533  ..^cfzo 13676  cexp 14076  Σcsu 15685  cprod 15902  expce 16058  πcpi 16063  reprcrepr 34410  vtscvts 34437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-inf2 9680  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232  ax-addf 11233
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-pm 8857  df-ixp 8926  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-fsupp 9402  df-fi 9450  df-sup 9481  df-inf 9482  df-oi 9549  df-card 9978  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-z 12606  df-dec 12725  df-uz 12870  df-q 12980  df-rp 13024  df-xneg 13141  df-xadd 13142  df-xmul 13143  df-ioo 13377  df-ioc 13378  df-ico 13379  df-icc 13380  df-fz 13534  df-fzo 13677  df-fl 13807  df-seq 14017  df-exp 14077  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-prod 15903  df-ef 16064  df-sin 16066  df-cos 16067  df-pi 16069  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19057  df-cntz 19306  df-cmn 19775  df-psmet 21327  df-xmet 21328  df-met 21329  df-bl 21330  df-mopn 21331  df-fbas 21332  df-fg 21333  df-cnfld 21336  df-top 22879  df-topon 22896  df-topsp 22918  df-bases 22932  df-cld 23006  df-ntr 23007  df-cls 23008  df-nei 23085  df-lp 23123  df-perf 23124  df-cn 23214  df-cnp 23215  df-haus 23302  df-tx 23549  df-hmeo 23742  df-fil 23833  df-fm 23925  df-flim 23926  df-flf 23927  df-xms 24309  df-ms 24310  df-tms 24311  df-cncf 24881  df-limc 25878  df-dv 25879  df-repr 34411  df-vts 34438
This theorem is referenced by:  circlemeth  34442
  Copyright terms: Public domain W3C validator