Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vtsprod Structured version   Visualization version   GIF version

Theorem vtsprod 34652
Description: Express the Vinogradov trigonometric sums to the power of 𝑆 (Contributed by Thierry Arnoux, 12-Dec-2021.)
Hypotheses
Ref Expression
vtsval.n (𝜑𝑁 ∈ ℕ0)
vtsval.x (𝜑𝑋 ∈ ℂ)
vtsprod.s (𝜑𝑆 ∈ ℕ0)
vtsprod.l (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
Assertion
Ref Expression
vtsprod (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Distinct variable groups:   𝐿,𝑎,𝑐,𝑚   𝑁,𝑎,𝑐,𝑚   𝑆,𝑎,𝑐,𝑚   𝑋,𝑎,𝑐,𝑚   𝜑,𝑎,𝑐,𝑚

Proof of Theorem vtsprod
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 vtsval.n . . 3 (𝜑𝑁 ∈ ℕ0)
2 vtsprod.s . . 3 (𝜑𝑆 ∈ ℕ0)
3 ax-icn 11065 . . . . . . 7 i ∈ ℂ
43a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
5 2cnd 12203 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
6 picn 26394 . . . . . . . 8 π ∈ ℂ
76a1i 11 . . . . . . 7 (𝜑 → π ∈ ℂ)
85, 7mulcld 11132 . . . . . 6 (𝜑 → (2 · π) ∈ ℂ)
94, 8mulcld 11132 . . . . 5 (𝜑 → (i · (2 · π)) ∈ ℂ)
10 vtsval.x . . . . 5 (𝜑𝑋 ∈ ℂ)
119, 10mulcld 11132 . . . 4 (𝜑 → ((i · (2 · π)) · 𝑋) ∈ ℂ)
1211efcld 15990 . . 3 (𝜑 → (exp‘((i · (2 · π)) · 𝑋)) ∈ ℂ)
13 vtsprod.l . . 3 (𝜑𝐿:(0..^𝑆)⟶(ℂ ↑m ℕ))
141, 2, 12, 13breprexp 34646 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
151adantr 480 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑁 ∈ ℕ0)
1610adantr 480 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝑋 ∈ ℂ)
1713ffvelcdmda 7017 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎) ∈ (ℂ ↑m ℕ))
18 elmapi 8773 . . . . . 6 ((𝐿𝑎) ∈ (ℂ ↑m ℕ) → (𝐿𝑎):ℕ⟶ℂ)
1917, 18syl 17 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → (𝐿𝑎):ℕ⟶ℂ)
2015, 16, 19vtsval 34650 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))))
21 fzssz 13426 . . . . . . . . . . 11 (1...𝑁) ⊆ ℤ
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
2321, 22sselid 3927 . . . . . . . . . 10 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
2423zcnd 12578 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℂ)
259ad2antrr 726 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (i · (2 · π)) ∈ ℂ)
2616adantr 480 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑋 ∈ ℂ)
2724, 25, 26mul12d 11322 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑏 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑏 · 𝑋)))
2827fveq2d 6826 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑏 · 𝑋))))
2911ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
30 efexp 16010 . . . . . . . 8 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑏 ∈ ℤ) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3129, 23, 30syl2anc 584 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘(𝑏 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3228, 31eqtr3d 2768 . . . . . 6 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (exp‘((i · (2 · π)) · (𝑏 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑏))
3332oveq2d 7362 . . . . 5 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = (((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3433sumeq2dv 15609 . . . 4 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · (exp‘((i · (2 · π)) · (𝑏 · 𝑋)))) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3520, 34eqtrd 2766 . . 3 ((𝜑𝑎 ∈ (0..^𝑆)) → (((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
3635prodeq2dv 15829 . 2 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((𝐿𝑎)‘𝑏) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑏)))
37 fzssz 13426 . . . . . . . . . . 11 (0...(𝑆 · 𝑁)) ⊆ ℤ
38 simpr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
3937, 38sselid 3927 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
4039adantr 480 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
4140zcnd 12578 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℂ)
429ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (i · (2 · π)) ∈ ℂ)
4310ad2antrr 726 . . . . . . . 8 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑋 ∈ ℂ)
4441, 42, 43mul12d 11322 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (𝑚 · ((i · (2 · π)) · 𝑋)) = ((i · (2 · π)) · (𝑚 · 𝑋)))
4544fveq2d 6826 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = (exp‘((i · (2 · π)) · (𝑚 · 𝑋))))
4611ad2antrr 726 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ((i · (2 · π)) · 𝑋) ∈ ℂ)
47 efexp 16010 . . . . . . 7 ((((i · (2 · π)) · 𝑋) ∈ ℂ ∧ 𝑚 ∈ ℤ) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4846, 40, 47syl2anc 584 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘(𝑚 · ((i · (2 · π)) · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
4945, 48eqtr3d 2768 . . . . 5 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (exp‘((i · (2 · π)) · (𝑚 · 𝑋))) = ((exp‘((i · (2 · π)) · 𝑋))↑𝑚))
5049oveq2d 7362 . . . 4 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5150sumeq2dv 15609 . . 3 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5251sumeq2dv 15609 . 2 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · ((exp‘((i · (2 · π)) · 𝑋))↑𝑚)))
5314, 36, 523eqtr4d 2776 1 (𝜑 → ∏𝑎 ∈ (0..^𝑆)(((𝐿𝑎)vts𝑁)‘𝑋) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑐𝑎)) · (exp‘((i · (2 · π)) · (𝑚 · 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004  0cc0 11006  1c1 11007  ici 11008   · cmul 11011  cn 12125  2c2 12180  0cn0 12381  cz 12468  ...cfz 13407  ..^cfzo 13554  cexp 13968  Σcsu 15593  cprod 15810  expce 15968  πcpi 15973  reprcrepr 34621  vtscvts 34648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-prod 15811  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-repr 34622  df-vts 34649
This theorem is referenced by:  circlemeth  34653
  Copyright terms: Public domain W3C validator