|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > evl1subd | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) | 
| Ref | Expression | 
|---|---|
| evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) | 
| evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) | 
| evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) | 
| evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) | 
| evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) | 
| evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | 
| evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | 
| evl1subd.s | ⊢ − = (-g‘𝑃) | 
| evl1subd.d | ⊢ 𝐷 = (-g‘𝑅) | 
| Ref | Expression | 
|---|---|
| evl1subd | ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | evl1addd.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | evl1addd.q | . . . . . . 7 ⊢ 𝑂 = (eval1‘𝑅) | |
| 3 | evl1addd.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2736 | . . . . . . 7 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 5 | evl1addd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 2, 3, 4, 5 | evl1rhm 22337 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) | 
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) | 
| 8 | rhmghm 20485 | . . . . 5 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) | 
| 10 | ghmgrp1 19237 | . . . 4 ⊢ (𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Grp) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) | 
| 12 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
| 13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) | 
| 14 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) | 
| 16 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 17 | evl1subd.s | . . . 4 ⊢ − = (-g‘𝑃) | |
| 18 | 16, 17 | grpsubcl 19039 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 − 𝑁) ∈ 𝑈) | 
| 19 | 11, 13, 15, 18 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑀 − 𝑁) ∈ 𝑈) | 
| 20 | eqid 2736 | . . . . . . 7 ⊢ (-g‘(𝑅 ↑s 𝐵)) = (-g‘(𝑅 ↑s 𝐵)) | |
| 21 | 16, 17, 20 | ghmsub 19243 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) | 
| 22 | 9, 13, 15, 21 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) | 
| 23 | crngring 20243 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 24 | ringgrp 20236 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 25 | 1, 23, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 26 | 5 | fvexi 6919 | . . . . . . 7 ⊢ 𝐵 ∈ V | 
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) | 
| 28 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 29 | 16, 28 | rhmf 20486 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) | 
| 30 | 7, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) | 
| 31 | 30, 13 | ffvelcdmd 7104 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) | 
| 32 | 30, 15 | ffvelcdmd 7104 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) | 
| 33 | evl1subd.d | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑅) | |
| 34 | 4, 28, 33, 20 | pwssub 19073 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 𝐵 ∈ V) ∧ ((𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵)) ∧ (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵)))) → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) | 
| 35 | 25, 27, 31, 32, 34 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) | 
| 36 | 22, 35 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) | 
| 37 | 36 | fveq1d 6907 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌)) | 
| 38 | 4, 5, 28, 1, 27, 31 | pwselbas 17535 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) | 
| 39 | 38 | ffnd 6736 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) | 
| 40 | 4, 5, 28, 1, 27, 32 | pwselbas 17535 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) | 
| 41 | 40 | ffnd 6736 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) | 
| 42 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 43 | fnfvof 7715 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) | |
| 44 | 39, 41, 27, 42, 43 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) | 
| 45 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) | 
| 46 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) | 
| 47 | 45, 46 | oveq12d 7450 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌)) = (𝑉𝐷𝑊)) | 
| 48 | 37, 44, 47 | 3eqtrd 2780 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊)) | 
| 49 | 19, 48 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 Basecbs 17248 ↑s cpws 17492 Grpcgrp 18952 -gcsg 18954 GrpHom cghm 19231 Ringcrg 20231 CRingccrg 20232 RingHom crh 20470 Poly1cpl1 22179 eval1ce1 22319 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-sup 9483 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-fzo 13696 df-seq 14044 df-hash 14371 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18797 df-submnd 18798 df-grp 18955 df-minusg 18956 df-sbg 18957 df-mulg 19087 df-subg 19142 df-ghm 19232 df-cntz 19336 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-srg 20185 df-ring 20233 df-cring 20234 df-rhm 20473 df-subrng 20547 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-assa 21874 df-asp 21875 df-ascl 21876 df-psr 21930 df-mvr 21931 df-mpl 21932 df-opsr 21934 df-evls 22099 df-evl 22100 df-psr1 22182 df-ply1 22184 df-evl1 22321 | 
| This theorem is referenced by: ply1remlem 26205 idomrootle 26213 lgsqrlem1 27391 evls1subd 33598 aks6d1c2lem4 42129 aks6d1c6lem2 42173 lineval 48316 | 
| Copyright terms: Public domain | W3C validator |