![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evl1subd | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1subd.s | ⊢ − = (-g‘𝑃) |
evl1subd.d | ⊢ 𝐷 = (-g‘𝑅) |
Ref | Expression |
---|---|
evl1subd | ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . . 7 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2726 | . . . . . . 7 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 22206 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmghm 20386 | . . . . 5 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) |
10 | ghmgrp1 19143 | . . . 4 ⊢ (𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
12 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
14 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
16 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
17 | evl1subd.s | . . . 4 ⊢ − = (-g‘𝑃) | |
18 | 16, 17 | grpsubcl 18948 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 − 𝑁) ∈ 𝑈) |
19 | 11, 13, 15, 18 | syl3anc 1368 | . 2 ⊢ (𝜑 → (𝑀 − 𝑁) ∈ 𝑈) |
20 | eqid 2726 | . . . . . . 7 ⊢ (-g‘(𝑅 ↑s 𝐵)) = (-g‘(𝑅 ↑s 𝐵)) | |
21 | 16, 17, 20 | ghmsub 19149 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
22 | 9, 13, 15, 21 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
23 | crngring 20150 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
24 | ringgrp 20143 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
25 | 1, 23, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
26 | 5 | fvexi 6899 | . . . . . . 7 ⊢ 𝐵 ∈ V |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
28 | eqid 2726 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
29 | 16, 28 | rhmf 20387 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
30 | 7, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
31 | 30, 13 | ffvelcdmd 7081 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
32 | 30, 15 | ffvelcdmd 7081 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
33 | evl1subd.d | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑅) | |
34 | 4, 28, 33, 20 | pwssub 18982 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 𝐵 ∈ V) ∧ ((𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵)) ∧ (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵)))) → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
35 | 25, 27, 31, 32, 34 | syl22anc 836 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
36 | 22, 35 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
37 | 36 | fveq1d 6887 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌)) |
38 | 4, 5, 28, 1, 27, 31 | pwselbas 17444 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
39 | 38 | ffnd 6712 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
40 | 4, 5, 28, 1, 27, 32 | pwselbas 17444 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
41 | 40 | ffnd 6712 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
42 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
43 | fnfvof 7684 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) | |
44 | 39, 41, 27, 42, 43 | syl22anc 836 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) |
45 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
46 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
47 | 45, 46 | oveq12d 7423 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌)) = (𝑉𝐷𝑊)) |
48 | 37, 44, 47 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊)) |
49 | 19, 48 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 Fn wfn 6532 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ∘f cof 7665 Basecbs 17153 ↑s cpws 17401 Grpcgrp 18863 -gcsg 18865 GrpHom cghm 19138 Ringcrg 20138 CRingccrg 20139 RingHom crh 20371 Poly1cpl1 22051 eval1ce1 22188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-ofr 7668 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-ghm 19139 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-srg 20092 df-ring 20140 df-cring 20141 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-assa 21748 df-asp 21749 df-ascl 21750 df-psr 21803 df-mvr 21804 df-mpl 21805 df-opsr 21807 df-evls 21977 df-evl 21978 df-psr1 22054 df-ply1 22056 df-evl1 22190 |
This theorem is referenced by: ply1remlem 26054 idomrootle 26062 lgsqrlem1 27234 evls1subd 33158 aks6d1c2lem4 41503 lineval 47350 |
Copyright terms: Public domain | W3C validator |