Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evl1subd | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
evl1subd.s | ⊢ − = (-g‘𝑃) |
evl1subd.d | ⊢ 𝐷 = (-g‘𝑅) |
Ref | Expression |
---|---|
evl1subd | ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evl1addd.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
2 | evl1addd.q | . . . . . . 7 ⊢ 𝑂 = (eval1‘𝑅) | |
3 | evl1addd.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | eqid 2739 | . . . . . . 7 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
5 | evl1addd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | evl1rhm 21277 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
8 | rhmghm 19775 | . . . . 5 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) |
10 | ghmgrp1 18654 | . . . 4 ⊢ (𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
12 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
13 | 12 | simpld 498 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
14 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
15 | 14 | simpld 498 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
16 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
17 | evl1subd.s | . . . 4 ⊢ − = (-g‘𝑃) | |
18 | 16, 17 | grpsubcl 18473 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 − 𝑁) ∈ 𝑈) |
19 | 11, 13, 15, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑀 − 𝑁) ∈ 𝑈) |
20 | eqid 2739 | . . . . . . 7 ⊢ (-g‘(𝑅 ↑s 𝐵)) = (-g‘(𝑅 ↑s 𝐵)) | |
21 | 16, 17, 20 | ghmsub 18660 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
22 | 9, 13, 15, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
23 | crngring 19604 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
24 | ringgrp 19597 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
25 | 1, 23, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
26 | 5 | fvexi 6752 | . . . . . . 7 ⊢ 𝐵 ∈ V |
27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
28 | eqid 2739 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
29 | 16, 28 | rhmf 19776 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
30 | 7, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
31 | 30, 13 | ffvelrnd 6926 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
32 | 30, 15 | ffvelrnd 6926 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
33 | evl1subd.d | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑅) | |
34 | 4, 28, 33, 20 | pwssub 18507 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 𝐵 ∈ V) ∧ ((𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵)) ∧ (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵)))) → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
35 | 25, 27, 31, 32, 34 | syl22anc 839 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
36 | 22, 35 | eqtrd 2779 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
37 | 36 | fveq1d 6740 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌)) |
38 | 4, 5, 28, 1, 27, 31 | pwselbas 17024 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
39 | 38 | ffnd 6567 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
40 | 4, 5, 28, 1, 27, 32 | pwselbas 17024 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
41 | 40 | ffnd 6567 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
42 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
43 | fnfvof 7506 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) | |
44 | 39, 41, 27, 42, 43 | syl22anc 839 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) |
45 | 12 | simprd 499 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
46 | 14 | simprd 499 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
47 | 45, 46 | oveq12d 7252 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌)) = (𝑉𝐷𝑊)) |
48 | 37, 44, 47 | 3eqtrd 2783 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊)) |
49 | 19, 48 | jca 515 | 1 ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 Vcvv 3422 Fn wfn 6395 ⟶wf 6396 ‘cfv 6400 (class class class)co 7234 ∘f cof 7488 Basecbs 16790 ↑s cpws 16981 Grpcgrp 18395 -gcsg 18397 GrpHom cghm 18649 Ringcrg 19592 CRingccrg 19593 RingHom crh 19762 Poly1cpl1 21127 eval1ce1 21259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-cnex 10812 ax-resscn 10813 ax-1cn 10814 ax-icn 10815 ax-addcl 10816 ax-addrcl 10817 ax-mulcl 10818 ax-mulrcl 10819 ax-mulcom 10820 ax-addass 10821 ax-mulass 10822 ax-distr 10823 ax-i2m1 10824 ax-1ne0 10825 ax-1rid 10826 ax-rnegex 10827 ax-rrecex 10828 ax-cnre 10829 ax-pre-lttri 10830 ax-pre-lttrn 10831 ax-pre-ltadd 10832 ax-pre-mulgt0 10833 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3711 df-csb 3828 df-dif 3885 df-un 3887 df-in 3889 df-ss 3899 df-pss 3901 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-iin 4923 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-of 7490 df-ofr 7491 df-om 7666 df-1st 7782 df-2nd 7783 df-supp 7927 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-er 8414 df-map 8533 df-pm 8534 df-ixp 8602 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-fsupp 9013 df-sup 9085 df-oi 9153 df-card 9582 df-pnf 10896 df-mnf 10897 df-xr 10898 df-ltxr 10899 df-le 10900 df-sub 11091 df-neg 11092 df-nn 11858 df-2 11920 df-3 11921 df-4 11922 df-5 11923 df-6 11924 df-7 11925 df-8 11926 df-9 11927 df-n0 12118 df-z 12204 df-dec 12321 df-uz 12466 df-fz 13123 df-fzo 13266 df-seq 13604 df-hash 13927 df-struct 16730 df-sets 16747 df-slot 16765 df-ndx 16775 df-base 16791 df-ress 16815 df-plusg 16845 df-mulr 16846 df-sca 16848 df-vsca 16849 df-ip 16850 df-tset 16851 df-ple 16852 df-ds 16854 df-hom 16856 df-cco 16857 df-0g 16976 df-gsum 16977 df-prds 16982 df-pws 16984 df-mre 17119 df-mrc 17120 df-acs 17122 df-mgm 18144 df-sgrp 18193 df-mnd 18204 df-mhm 18248 df-submnd 18249 df-grp 18398 df-minusg 18399 df-sbg 18400 df-mulg 18519 df-subg 18570 df-ghm 18650 df-cntz 18741 df-cmn 19202 df-abl 19203 df-mgp 19535 df-ur 19547 df-srg 19551 df-ring 19594 df-cring 19595 df-rnghom 19765 df-subrg 19828 df-lmod 19931 df-lss 19999 df-lsp 20039 df-assa 20845 df-asp 20846 df-ascl 20847 df-psr 20897 df-mvr 20898 df-mpl 20899 df-opsr 20901 df-evls 21061 df-evl 21062 df-psr1 21130 df-ply1 21132 df-evl1 21261 |
This theorem is referenced by: ply1remlem 25089 lgsqrlem1 26256 idomrootle 40758 lineval 45441 |
Copyright terms: Public domain | W3C validator |