| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1subd | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| evl1addd.q | ⊢ 𝑂 = (eval1‘𝑅) |
| evl1addd.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| evl1addd.b | ⊢ 𝐵 = (Base‘𝑅) |
| evl1addd.u | ⊢ 𝑈 = (Base‘𝑃) |
| evl1addd.1 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1addd.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| evl1addd.3 | ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) |
| evl1addd.4 | ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) |
| evl1subd.s | ⊢ − = (-g‘𝑃) |
| evl1subd.d | ⊢ 𝐷 = (-g‘𝑅) |
| Ref | Expression |
|---|---|
| evl1subd | ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1addd.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 2 | evl1addd.q | . . . . . . 7 ⊢ 𝑂 = (eval1‘𝑅) | |
| 3 | evl1addd.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 5 | evl1addd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 2, 3, 4, 5 | evl1rhm 22245 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵))) |
| 8 | rhmghm 20399 | . . . . 5 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵))) |
| 10 | ghmgrp1 19128 | . . . 4 ⊢ (𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) → 𝑃 ∈ Grp) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 12 | evl1addd.3 | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝑈 ∧ ((𝑂‘𝑀)‘𝑌) = 𝑉)) | |
| 13 | 12 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑈) |
| 14 | evl1addd.4 | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝑈 ∧ ((𝑂‘𝑁)‘𝑌) = 𝑊)) | |
| 15 | 14 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝑈) |
| 16 | evl1addd.u | . . . 4 ⊢ 𝑈 = (Base‘𝑃) | |
| 17 | evl1subd.s | . . . 4 ⊢ − = (-g‘𝑃) | |
| 18 | 16, 17 | grpsubcl 18930 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑀 − 𝑁) ∈ 𝑈) |
| 19 | 11, 13, 15, 18 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝑀 − 𝑁) ∈ 𝑈) |
| 20 | eqid 2731 | . . . . . . 7 ⊢ (-g‘(𝑅 ↑s 𝐵)) = (-g‘(𝑅 ↑s 𝐵)) | |
| 21 | 16, 17, 20 | ghmsub 19134 | . . . . . 6 ⊢ ((𝑂 ∈ (𝑃 GrpHom (𝑅 ↑s 𝐵)) ∧ 𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑈) → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
| 22 | 9, 13, 15, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁))) |
| 23 | crngring 20161 | . . . . . . 7 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 24 | ringgrp 20154 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 25 | 1, 23, 24 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 26 | 5 | fvexi 6836 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 27 | 26 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ V) |
| 28 | eqid 2731 | . . . . . . . . 9 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 29 | 16, 28 | rhmf 20400 | . . . . . . . 8 ⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
| 30 | 7, 29 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑂:𝑈⟶(Base‘(𝑅 ↑s 𝐵))) |
| 31 | 30, 13 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 32 | 30, 15 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 33 | evl1subd.d | . . . . . . 7 ⊢ 𝐷 = (-g‘𝑅) | |
| 34 | 4, 28, 33, 20 | pwssub 18964 | . . . . . 6 ⊢ (((𝑅 ∈ Grp ∧ 𝐵 ∈ V) ∧ ((𝑂‘𝑀) ∈ (Base‘(𝑅 ↑s 𝐵)) ∧ (𝑂‘𝑁) ∈ (Base‘(𝑅 ↑s 𝐵)))) → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
| 35 | 25, 27, 31, 32, 34 | syl22anc 838 | . . . . 5 ⊢ (𝜑 → ((𝑂‘𝑀)(-g‘(𝑅 ↑s 𝐵))(𝑂‘𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
| 36 | 22, 35 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑂‘(𝑀 − 𝑁)) = ((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))) |
| 37 | 36 | fveq1d 6824 | . . 3 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌)) |
| 38 | 4, 5, 28, 1, 27, 31 | pwselbas 17390 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑀):𝐵⟶𝐵) |
| 39 | 38 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑀) Fn 𝐵) |
| 40 | 4, 5, 28, 1, 27, 32 | pwselbas 17390 | . . . . 5 ⊢ (𝜑 → (𝑂‘𝑁):𝐵⟶𝐵) |
| 41 | 40 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑂‘𝑁) Fn 𝐵) |
| 42 | evl1addd.2 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 43 | fnfvof 7627 | . . . 4 ⊢ ((((𝑂‘𝑀) Fn 𝐵 ∧ (𝑂‘𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌 ∈ 𝐵)) → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) | |
| 44 | 39, 41, 27, 42, 43 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀) ∘f 𝐷(𝑂‘𝑁))‘𝑌) = (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌))) |
| 45 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑀)‘𝑌) = 𝑉) |
| 46 | 14 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑂‘𝑁)‘𝑌) = 𝑊) |
| 47 | 45, 46 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (((𝑂‘𝑀)‘𝑌)𝐷((𝑂‘𝑁)‘𝑌)) = (𝑉𝐷𝑊)) |
| 48 | 37, 44, 47 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊)) |
| 49 | 19, 48 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 − 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 − 𝑁))‘𝑌) = (𝑉𝐷𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17117 ↑s cpws 17347 Grpcgrp 18843 -gcsg 18845 GrpHom cghm 19122 Ringcrg 20149 CRingccrg 20150 RingHom crh 20385 Poly1cpl1 22087 eval1ce1 22227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-0g 17342 df-gsum 17343 df-prds 17348 df-pws 17350 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-mulg 18978 df-subg 19033 df-ghm 19123 df-cntz 19227 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-srg 20103 df-ring 20151 df-cring 20152 df-rhm 20388 df-subrng 20459 df-subrg 20483 df-lmod 20793 df-lss 20863 df-lsp 20903 df-assa 21788 df-asp 21789 df-ascl 21790 df-psr 21844 df-mvr 21845 df-mpl 21846 df-opsr 21848 df-evls 22007 df-evl 22008 df-psr1 22090 df-ply1 22092 df-evl1 22229 |
| This theorem is referenced by: ply1remlem 26095 idomrootle 26103 lgsqrlem1 27282 evls1subd 33530 aks6d1c2lem4 42159 aks6d1c6lem2 42203 lineval 48425 |
| Copyright terms: Public domain | W3C validator |