MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1subd Structured version   Visualization version   GIF version

Theorem evl1subd 22347
Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1addd.4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
evl1subd.s = (-g𝑃)
evl1subd.d 𝐷 = (-g𝑅)
Assertion
Ref Expression
evl1subd (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉𝐷𝑊)))

Proof of Theorem evl1subd
StepHypRef Expression
1 evl1addd.1 . . . . . 6 (𝜑𝑅 ∈ CRing)
2 evl1addd.q . . . . . . 7 𝑂 = (eval1𝑅)
3 evl1addd.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2736 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
5 evl1addd.b . . . . . . 7 𝐵 = (Base‘𝑅)
62, 3, 4, 5evl1rhm 22337 . . . . . 6 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
71, 6syl 17 . . . . 5 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
8 rhmghm 20485 . . . . 5 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
97, 8syl 17 . . . 4 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
10 ghmgrp1 19237 . . . 4 (𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) → 𝑃 ∈ Grp)
119, 10syl 17 . . 3 (𝜑𝑃 ∈ Grp)
12 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1312simpld 494 . . 3 (𝜑𝑀𝑈)
14 evl1addd.4 . . . 4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
1514simpld 494 . . 3 (𝜑𝑁𝑈)
16 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
17 evl1subd.s . . . 4 = (-g𝑃)
1816, 17grpsubcl 19039 . . 3 ((𝑃 ∈ Grp ∧ 𝑀𝑈𝑁𝑈) → (𝑀 𝑁) ∈ 𝑈)
1911, 13, 15, 18syl3anc 1372 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝑈)
20 eqid 2736 . . . . . . 7 (-g‘(𝑅s 𝐵)) = (-g‘(𝑅s 𝐵))
2116, 17, 20ghmsub 19243 . . . . . 6 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) ∧ 𝑀𝑈𝑁𝑈) → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)))
229, 13, 15, 21syl3anc 1372 . . . . 5 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)))
23 crngring 20243 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 ringgrp 20236 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
251, 23, 243syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
265fvexi 6919 . . . . . . 7 𝐵 ∈ V
2726a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
28 eqid 2736 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
2916, 28rhmf 20486 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
307, 29syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
3130, 13ffvelcdmd 7104 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
3230, 15ffvelcdmd 7104 . . . . . 6 (𝜑 → (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))
33 evl1subd.d . . . . . . 7 𝐷 = (-g𝑅)
344, 28, 33, 20pwssub 19073 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐵 ∈ V) ∧ ((𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)) ∧ (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))) → ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f 𝐷(𝑂𝑁)))
3525, 27, 31, 32, 34syl22anc 838 . . . . 5 (𝜑 → ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f 𝐷(𝑂𝑁)))
3622, 35eqtrd 2776 . . . 4 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀) ∘f 𝐷(𝑂𝑁)))
3736fveq1d 6907 . . 3 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (((𝑂𝑀) ∘f 𝐷(𝑂𝑁))‘𝑌))
384, 5, 28, 1, 27, 31pwselbas 17535 . . . . 5 (𝜑 → (𝑂𝑀):𝐵𝐵)
3938ffnd 6736 . . . 4 (𝜑 → (𝑂𝑀) Fn 𝐵)
404, 5, 28, 1, 27, 32pwselbas 17535 . . . . 5 (𝜑 → (𝑂𝑁):𝐵𝐵)
4140ffnd 6736 . . . 4 (𝜑 → (𝑂𝑁) Fn 𝐵)
42 evl1addd.2 . . . 4 (𝜑𝑌𝐵)
43 fnfvof 7715 . . . 4 ((((𝑂𝑀) Fn 𝐵 ∧ (𝑂𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌𝐵)) → (((𝑂𝑀) ∘f 𝐷(𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌)𝐷((𝑂𝑁)‘𝑌)))
4439, 41, 27, 42, 43syl22anc 838 . . 3 (𝜑 → (((𝑂𝑀) ∘f 𝐷(𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌)𝐷((𝑂𝑁)‘𝑌)))
4512simprd 495 . . . 4 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
4614simprd 495 . . . 4 (𝜑 → ((𝑂𝑁)‘𝑌) = 𝑊)
4745, 46oveq12d 7450 . . 3 (𝜑 → (((𝑂𝑀)‘𝑌)𝐷((𝑂𝑁)‘𝑌)) = (𝑉𝐷𝑊))
4837, 44, 473eqtrd 2780 . 2 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉𝐷𝑊))
4919, 48jca 511 1 (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉𝐷𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  Basecbs 17248  s cpws 17492  Grpcgrp 18952  -gcsg 18954   GrpHom cghm 19231  Ringcrg 20231  CRingccrg 20232   RingHom crh 20470  Poly1cpl1 22179  eval1ce1 22319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-srg 20185  df-ring 20233  df-cring 20234  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-assa 21874  df-asp 21875  df-ascl 21876  df-psr 21930  df-mvr 21931  df-mpl 21932  df-opsr 21934  df-evls 22099  df-evl 22100  df-psr1 22182  df-ply1 22184  df-evl1 22321
This theorem is referenced by:  ply1remlem  26205  idomrootle  26213  lgsqrlem1  27391  evls1subd  33598  aks6d1c2lem4  42129  aks6d1c6lem2  42173  lineval  48316
  Copyright terms: Public domain W3C validator