MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evl1subd Structured version   Visualization version   GIF version

Theorem evl1subd 22280
Description: Polynomial evaluation builder for subtraction of polynomials. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
evl1addd.q 𝑂 = (eval1𝑅)
evl1addd.p 𝑃 = (Poly1𝑅)
evl1addd.b 𝐵 = (Base‘𝑅)
evl1addd.u 𝑈 = (Base‘𝑃)
evl1addd.1 (𝜑𝑅 ∈ CRing)
evl1addd.2 (𝜑𝑌𝐵)
evl1addd.3 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
evl1addd.4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
evl1subd.s = (-g𝑃)
evl1subd.d 𝐷 = (-g𝑅)
Assertion
Ref Expression
evl1subd (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉𝐷𝑊)))

Proof of Theorem evl1subd
StepHypRef Expression
1 evl1addd.1 . . . . . 6 (𝜑𝑅 ∈ CRing)
2 evl1addd.q . . . . . . 7 𝑂 = (eval1𝑅)
3 evl1addd.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 eqid 2728 . . . . . . 7 (𝑅s 𝐵) = (𝑅s 𝐵)
5 evl1addd.b . . . . . . 7 𝐵 = (Base‘𝑅)
62, 3, 4, 5evl1rhm 22270 . . . . . 6 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
71, 6syl 17 . . . . 5 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)))
8 rhmghm 20437 . . . . 5 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
97, 8syl 17 . . . 4 (𝜑𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)))
10 ghmgrp1 19186 . . . 4 (𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) → 𝑃 ∈ Grp)
119, 10syl 17 . . 3 (𝜑𝑃 ∈ Grp)
12 evl1addd.3 . . . 4 (𝜑 → (𝑀𝑈 ∧ ((𝑂𝑀)‘𝑌) = 𝑉))
1312simpld 493 . . 3 (𝜑𝑀𝑈)
14 evl1addd.4 . . . 4 (𝜑 → (𝑁𝑈 ∧ ((𝑂𝑁)‘𝑌) = 𝑊))
1514simpld 493 . . 3 (𝜑𝑁𝑈)
16 evl1addd.u . . . 4 𝑈 = (Base‘𝑃)
17 evl1subd.s . . . 4 = (-g𝑃)
1816, 17grpsubcl 18990 . . 3 ((𝑃 ∈ Grp ∧ 𝑀𝑈𝑁𝑈) → (𝑀 𝑁) ∈ 𝑈)
1911, 13, 15, 18syl3anc 1368 . 2 (𝜑 → (𝑀 𝑁) ∈ 𝑈)
20 eqid 2728 . . . . . . 7 (-g‘(𝑅s 𝐵)) = (-g‘(𝑅s 𝐵))
2116, 17, 20ghmsub 19192 . . . . . 6 ((𝑂 ∈ (𝑃 GrpHom (𝑅s 𝐵)) ∧ 𝑀𝑈𝑁𝑈) → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)))
229, 13, 15, 21syl3anc 1368 . . . . 5 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)))
23 crngring 20199 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
24 ringgrp 20192 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
251, 23, 243syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
265fvexi 6916 . . . . . . 7 𝐵 ∈ V
2726a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
28 eqid 2728 . . . . . . . . 9 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
2916, 28rhmf 20438 . . . . . . . 8 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐵)) → 𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
307, 29syl 17 . . . . . . 7 (𝜑𝑂:𝑈⟶(Base‘(𝑅s 𝐵)))
3130, 13ffvelcdmd 7100 . . . . . 6 (𝜑 → (𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)))
3230, 15ffvelcdmd 7100 . . . . . 6 (𝜑 → (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))
33 evl1subd.d . . . . . . 7 𝐷 = (-g𝑅)
344, 28, 33, 20pwssub 19024 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐵 ∈ V) ∧ ((𝑂𝑀) ∈ (Base‘(𝑅s 𝐵)) ∧ (𝑂𝑁) ∈ (Base‘(𝑅s 𝐵)))) → ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f 𝐷(𝑂𝑁)))
3525, 27, 31, 32, 34syl22anc 837 . . . . 5 (𝜑 → ((𝑂𝑀)(-g‘(𝑅s 𝐵))(𝑂𝑁)) = ((𝑂𝑀) ∘f 𝐷(𝑂𝑁)))
3622, 35eqtrd 2768 . . . 4 (𝜑 → (𝑂‘(𝑀 𝑁)) = ((𝑂𝑀) ∘f 𝐷(𝑂𝑁)))
3736fveq1d 6904 . . 3 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (((𝑂𝑀) ∘f 𝐷(𝑂𝑁))‘𝑌))
384, 5, 28, 1, 27, 31pwselbas 17480 . . . . 5 (𝜑 → (𝑂𝑀):𝐵𝐵)
3938ffnd 6728 . . . 4 (𝜑 → (𝑂𝑀) Fn 𝐵)
404, 5, 28, 1, 27, 32pwselbas 17480 . . . . 5 (𝜑 → (𝑂𝑁):𝐵𝐵)
4140ffnd 6728 . . . 4 (𝜑 → (𝑂𝑁) Fn 𝐵)
42 evl1addd.2 . . . 4 (𝜑𝑌𝐵)
43 fnfvof 7709 . . . 4 ((((𝑂𝑀) Fn 𝐵 ∧ (𝑂𝑁) Fn 𝐵) ∧ (𝐵 ∈ V ∧ 𝑌𝐵)) → (((𝑂𝑀) ∘f 𝐷(𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌)𝐷((𝑂𝑁)‘𝑌)))
4439, 41, 27, 42, 43syl22anc 837 . . 3 (𝜑 → (((𝑂𝑀) ∘f 𝐷(𝑂𝑁))‘𝑌) = (((𝑂𝑀)‘𝑌)𝐷((𝑂𝑁)‘𝑌)))
4512simprd 494 . . . 4 (𝜑 → ((𝑂𝑀)‘𝑌) = 𝑉)
4614simprd 494 . . . 4 (𝜑 → ((𝑂𝑁)‘𝑌) = 𝑊)
4745, 46oveq12d 7444 . . 3 (𝜑 → (((𝑂𝑀)‘𝑌)𝐷((𝑂𝑁)‘𝑌)) = (𝑉𝐷𝑊))
4837, 44, 473eqtrd 2772 . 2 (𝜑 → ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉𝐷𝑊))
4919, 48jca 510 1 (𝜑 → ((𝑀 𝑁) ∈ 𝑈 ∧ ((𝑂‘(𝑀 𝑁))‘𝑌) = (𝑉𝐷𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  f cof 7690  Basecbs 17189  s cpws 17437  Grpcgrp 18904  -gcsg 18906   GrpHom cghm 19181  Ringcrg 20187  CRingccrg 20188   RingHom crh 20422  Poly1cpl1 22114  eval1ce1 22252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-ofr 7693  df-om 7879  df-1st 8001  df-2nd 8002  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-er 8733  df-map 8855  df-pm 8856  df-ixp 8925  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-fsupp 9396  df-sup 9475  df-oi 9543  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-nn 12253  df-2 12315  df-3 12316  df-4 12317  df-5 12318  df-6 12319  df-7 12320  df-8 12321  df-9 12322  df-n0 12513  df-z 12599  df-dec 12718  df-uz 12863  df-fz 13527  df-fzo 13670  df-seq 14009  df-hash 14332  df-struct 17125  df-sets 17142  df-slot 17160  df-ndx 17172  df-base 17190  df-ress 17219  df-plusg 17255  df-mulr 17256  df-sca 17258  df-vsca 17259  df-ip 17260  df-tset 17261  df-ple 17262  df-ds 17264  df-hom 17266  df-cco 17267  df-0g 17432  df-gsum 17433  df-prds 17438  df-pws 17440  df-mre 17575  df-mrc 17576  df-acs 17578  df-mgm 18609  df-sgrp 18688  df-mnd 18704  df-mhm 18749  df-submnd 18750  df-grp 18907  df-minusg 18908  df-sbg 18909  df-mulg 19038  df-subg 19092  df-ghm 19182  df-cntz 19282  df-cmn 19751  df-abl 19752  df-mgp 20089  df-rng 20107  df-ur 20136  df-srg 20141  df-ring 20189  df-cring 20190  df-rhm 20425  df-subrng 20497  df-subrg 20522  df-lmod 20759  df-lss 20830  df-lsp 20870  df-assa 21801  df-asp 21802  df-ascl 21803  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-evls 22035  df-evl 22036  df-psr1 22117  df-ply1 22119  df-evl1 22254
This theorem is referenced by:  ply1remlem  26127  idomrootle  26135  lgsqrlem1  27307  evls1subd  33297  aks6d1c2lem4  41638  aks6d1c6lem2  41683  lineval  47558
  Copyright terms: Public domain W3C validator