| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrsp | Structured version Visualization version GIF version | ||
| Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| elrsp.n | ⊢ 𝑁 = (RSpan‘𝑅) |
| elrsp.b | ⊢ 𝐵 = (Base‘𝑅) |
| elrsp.1 | ⊢ 0 = (0g‘𝑅) |
| elrsp.x | ⊢ · = (.r‘𝑅) |
| elrsp.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| elrsp.i | ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| elrsp | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrsp.n | . . . 4 ⊢ 𝑁 = (RSpan‘𝑅) | |
| 2 | rspval 21121 | . . . 4 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
| 3 | 1, 2 | eqtri 2752 | . . 3 ⊢ 𝑁 = (LSpan‘(ringLMod‘𝑅)) |
| 4 | elrsp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rlmbas 21100 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
| 6 | 4, 5 | eqtri 2752 | . . 3 ⊢ 𝐵 = (Base‘(ringLMod‘𝑅)) |
| 7 | eqid 2729 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
| 8 | eqid 2729 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
| 9 | eqid 2729 | . . 3 ⊢ (0g‘(Scalar‘(ringLMod‘𝑅))) = (0g‘(Scalar‘(ringLMod‘𝑅))) | |
| 10 | elrsp.x | . . . 4 ⊢ · = (.r‘𝑅) | |
| 11 | rlmvsca 21107 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
| 12 | 10, 11 | eqtri 2752 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
| 13 | elrsp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 14 | rlmlmod 21110 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
| 16 | elrsp.i | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) | |
| 17 | 3, 6, 7, 8, 9, 12, 15, 16 | ellspds 33339 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
| 18 | rlmsca 21105 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
| 19 | 13, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
| 20 | 19 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 21 | 4, 20 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
| 22 | 21 | oveq1d 7402 | . . 3 ⊢ (𝜑 → (𝐵 ↑m 𝐼) = ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)) |
| 23 | elrsp.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 24 | 19 | fveq2d 6862 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘(Scalar‘(ringLMod‘𝑅)))) |
| 25 | 23, 24 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 0 = (0g‘(Scalar‘(ringLMod‘𝑅)))) |
| 26 | 25 | breq2d 5119 | . . . 4 ⊢ (𝜑 → (𝑎 finSupp 0 ↔ 𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))))) |
| 27 | 4 | fvexi 6872 | . . . . . . . . 9 ⊢ 𝐵 ∈ V |
| 28 | 27 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ V) |
| 29 | 28, 16 | ssexd 5279 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ V) |
| 30 | 29 | mptexd 7198 | . . . . . 6 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)) ∈ V) |
| 31 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
| 32 | rlmplusg 21101 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (+g‘𝑅) = (+g‘(ringLMod‘𝑅))) |
| 34 | 30, 13, 15, 31, 33 | gsumpropd 18605 | . . . . 5 ⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖))) = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))) |
| 35 | 34 | eqeq2d 2740 | . . . 4 ⊢ (𝜑 → (𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖))) ↔ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖))))) |
| 36 | 26, 35 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))) ↔ (𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
| 37 | 22, 36 | rexeqbidv 3320 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
| 38 | 17, 37 | bitr4d 282 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 finSupp cfsupp 9312 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 Σg cgsu 17403 Ringcrg 20142 LModclmod 20766 LSpanclspn 20877 ringLModcrglmod 21079 RSpancrsp 21117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-nzr 20422 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lmhm 20929 df-lbs 20982 df-sra 21080 df-rgmod 21081 df-rsp 21119 df-dsmm 21641 df-frlm 21656 df-uvc 21692 |
| This theorem is referenced by: elrspunidl 33399 elrspunsn 33400 |
| Copyright terms: Public domain | W3C validator |