Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrsp Structured version   Visualization version   GIF version

Theorem elrsp 33318
Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
elrsp.n 𝑁 = (RSpan‘𝑅)
elrsp.b 𝐵 = (Base‘𝑅)
elrsp.1 0 = (0g𝑅)
elrsp.x · = (.r𝑅)
elrsp.r (𝜑𝑅 ∈ Ring)
elrsp.i (𝜑𝐼𝐵)
Assertion
Ref Expression
elrsp (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Distinct variable groups:   · ,𝑎,𝑖   𝐵,𝑎   𝐼,𝑎,𝑖   𝑁,𝑎   𝑅,𝑎,𝑖   𝑋,𝑎   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝑁(𝑖)   𝑋(𝑖)   0 (𝑖,𝑎)

Proof of Theorem elrsp
StepHypRef Expression
1 elrsp.n . . . 4 𝑁 = (RSpan‘𝑅)
2 rspval 21118 . . . 4 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
31, 2eqtri 2752 . . 3 𝑁 = (LSpan‘(ringLMod‘𝑅))
4 elrsp.b . . . 4 𝐵 = (Base‘𝑅)
5 rlmbas 21097 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
64, 5eqtri 2752 . . 3 𝐵 = (Base‘(ringLMod‘𝑅))
7 eqid 2729 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
8 eqid 2729 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
9 eqid 2729 . . 3 (0g‘(Scalar‘(ringLMod‘𝑅))) = (0g‘(Scalar‘(ringLMod‘𝑅)))
10 elrsp.x . . . 4 · = (.r𝑅)
11 rlmvsca 21104 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2752 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 elrsp.r . . . 4 (𝜑𝑅 ∈ Ring)
14 rlmlmod 21107 . . . 4 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
1513, 14syl 17 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
16 elrsp.i . . 3 (𝜑𝐼𝐵)
173, 6, 7, 8, 9, 12, 15, 16ellspds 33314 . 2 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
18 rlmsca 21102 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1913, 18syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
2019fveq2d 6826 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
214, 20eqtrid 2776 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
2221oveq1d 7364 . . 3 (𝜑 → (𝐵m 𝐼) = ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼))
23 elrsp.1 . . . . . 6 0 = (0g𝑅)
2419fveq2d 6826 . . . . . 6 (𝜑 → (0g𝑅) = (0g‘(Scalar‘(ringLMod‘𝑅))))
2523, 24eqtrid 2776 . . . . 5 (𝜑0 = (0g‘(Scalar‘(ringLMod‘𝑅))))
2625breq2d 5104 . . . 4 (𝜑 → (𝑎 finSupp 0𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅)))))
274fvexi 6836 . . . . . . . . 9 𝐵 ∈ V
2827a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
2928, 16ssexd 5263 . . . . . . 7 (𝜑𝐼 ∈ V)
3029mptexd 7160 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)) ∈ V)
315a1i 11 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
32 rlmplusg 21098 . . . . . . 7 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3332a1i 11 . . . . . 6 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3430, 13, 15, 31, 33gsumpropd 18552 . . . . 5 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))
3534eqeq2d 2740 . . . 4 (𝜑 → (𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) ↔ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))))
3626, 35anbi12d 632 . . 3 (𝜑 → ((𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ (𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3722, 36rexeqbidv 3310 . 2 (𝜑 → (∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3817, 37bitr4d 282 1 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092  cmpt 5173  cfv 6482  (class class class)co 7349  m cmap 8753   finSupp cfsupp 9251  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343   Σg cgsu 17344  Ringcrg 20118  LModclmod 20763  LSpanclspn 20874  ringLModcrglmod 21076  RSpancrsp 21114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-nzr 20398  df-subrg 20455  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lbs 20979  df-sra 21077  df-rgmod 21078  df-rsp 21116  df-dsmm 21639  df-frlm 21654  df-uvc 21690
This theorem is referenced by:  elrspunidl  33374  elrspunsn  33375
  Copyright terms: Public domain W3C validator