![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrsp | Structured version Visualization version GIF version |
Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
Ref | Expression |
---|---|
elrsp.n | ⊢ 𝑁 = (RSpan‘𝑅) |
elrsp.b | ⊢ 𝐵 = (Base‘𝑅) |
elrsp.1 | ⊢ 0 = (0g‘𝑅) |
elrsp.x | ⊢ · = (.r‘𝑅) |
elrsp.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
elrsp.i | ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
Ref | Expression |
---|---|
elrsp | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrsp.n | . . . 4 ⊢ 𝑁 = (RSpan‘𝑅) | |
2 | rspval 20662 | . . . 4 ⊢ (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅)) | |
3 | 1, 2 | eqtri 2764 | . . 3 ⊢ 𝑁 = (LSpan‘(ringLMod‘𝑅)) |
4 | elrsp.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
5 | rlmbas 20664 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(ringLMod‘𝑅)) | |
6 | 4, 5 | eqtri 2764 | . . 3 ⊢ 𝐵 = (Base‘(ringLMod‘𝑅)) |
7 | eqid 2736 | . . 3 ⊢ (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅))) | |
8 | eqid 2736 | . . 3 ⊢ (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅)) | |
9 | eqid 2736 | . . 3 ⊢ (0g‘(Scalar‘(ringLMod‘𝑅))) = (0g‘(Scalar‘(ringLMod‘𝑅))) | |
10 | elrsp.x | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | rlmvsca 20671 | . . . 4 ⊢ (.r‘𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅)) | |
12 | 10, 11 | eqtri 2764 | . . 3 ⊢ · = ( ·𝑠 ‘(ringLMod‘𝑅)) |
13 | elrsp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
14 | rlmlmod 20674 | . . . 4 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
16 | elrsp.i | . . 3 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) | |
17 | 3, 6, 7, 8, 9, 12, 15, 16 | ellspds 32157 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
18 | rlmsca 20669 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅))) | |
19 | 13, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘(ringLMod‘𝑅))) |
20 | 19 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
21 | 4, 20 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅)))) |
22 | 21 | oveq1d 7372 | . . 3 ⊢ (𝜑 → (𝐵 ↑m 𝐼) = ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)) |
23 | elrsp.1 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
24 | 19 | fveq2d 6846 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘(Scalar‘(ringLMod‘𝑅)))) |
25 | 23, 24 | eqtrid 2788 | . . . . 5 ⊢ (𝜑 → 0 = (0g‘(Scalar‘(ringLMod‘𝑅)))) |
26 | 25 | breq2d 5117 | . . . 4 ⊢ (𝜑 → (𝑎 finSupp 0 ↔ 𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))))) |
27 | 4 | fvexi 6856 | . . . . . . . . 9 ⊢ 𝐵 ∈ V |
28 | 27 | a1i 11 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ V) |
29 | 28, 16 | ssexd 5281 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ V) |
30 | 29 | mptexd 7174 | . . . . . 6 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)) ∈ V) |
31 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅))) |
32 | rlmplusg 20665 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘(ringLMod‘𝑅)) | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (+g‘𝑅) = (+g‘(ringLMod‘𝑅))) |
34 | 30, 13, 15, 31, 33 | gsumpropd 18533 | . . . . 5 ⊢ (𝜑 → (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖))) = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))) |
35 | 34 | eqeq2d 2747 | . . . 4 ⊢ (𝜑 → (𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖))) ↔ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖))))) |
36 | 26, 35 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))) ↔ (𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
37 | 22, 36 | rexeqbidv 3320 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
38 | 17, 37 | bitr4d 281 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘𝐼) ↔ ∃𝑎 ∈ (𝐵 ↑m 𝐼)(𝑎 finSupp 0 ∧ 𝑋 = (𝑅 Σg (𝑖 ∈ 𝐼 ↦ ((𝑎‘𝑖) · 𝑖)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 Vcvv 3445 ⊆ wss 3910 class class class wbr 5105 ↦ cmpt 5188 ‘cfv 6496 (class class class)co 7357 ↑m cmap 8765 finSupp cfsupp 9305 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 0gc0g 17321 Σg cgsu 17322 Ringcrg 19964 LModclmod 20322 LSpanclspn 20432 ringLModcrglmod 20630 RSpancrsp 20632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-0g 17323 df-gsum 17324 df-prds 17329 df-pws 17331 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-subrg 20220 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lmhm 20483 df-lbs 20536 df-sra 20633 df-rgmod 20634 df-rsp 20636 df-nzr 20728 df-dsmm 21138 df-frlm 21153 df-uvc 21189 |
This theorem is referenced by: elrspunidl 32203 |
Copyright terms: Public domain | W3C validator |