Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrsp Structured version   Visualization version   GIF version

Theorem elrsp 32162
Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
elrsp.n 𝑁 = (RSpan‘𝑅)
elrsp.b 𝐵 = (Base‘𝑅)
elrsp.1 0 = (0g𝑅)
elrsp.x · = (.r𝑅)
elrsp.r (𝜑𝑅 ∈ Ring)
elrsp.i (𝜑𝐼𝐵)
Assertion
Ref Expression
elrsp (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Distinct variable groups:   · ,𝑎,𝑖   𝐵,𝑎   𝐼,𝑎,𝑖   𝑁,𝑎   𝑅,𝑎,𝑖   𝑋,𝑎   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝑁(𝑖)   𝑋(𝑖)   0 (𝑖,𝑎)

Proof of Theorem elrsp
StepHypRef Expression
1 elrsp.n . . . 4 𝑁 = (RSpan‘𝑅)
2 rspval 20662 . . . 4 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
31, 2eqtri 2764 . . 3 𝑁 = (LSpan‘(ringLMod‘𝑅))
4 elrsp.b . . . 4 𝐵 = (Base‘𝑅)
5 rlmbas 20664 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
64, 5eqtri 2764 . . 3 𝐵 = (Base‘(ringLMod‘𝑅))
7 eqid 2736 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
8 eqid 2736 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
9 eqid 2736 . . 3 (0g‘(Scalar‘(ringLMod‘𝑅))) = (0g‘(Scalar‘(ringLMod‘𝑅)))
10 elrsp.x . . . 4 · = (.r𝑅)
11 rlmvsca 20671 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2764 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 elrsp.r . . . 4 (𝜑𝑅 ∈ Ring)
14 rlmlmod 20674 . . . 4 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
1513, 14syl 17 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
16 elrsp.i . . 3 (𝜑𝐼𝐵)
173, 6, 7, 8, 9, 12, 15, 16ellspds 32157 . 2 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
18 rlmsca 20669 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1913, 18syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
2019fveq2d 6846 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
214, 20eqtrid 2788 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
2221oveq1d 7372 . . 3 (𝜑 → (𝐵m 𝐼) = ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼))
23 elrsp.1 . . . . . 6 0 = (0g𝑅)
2419fveq2d 6846 . . . . . 6 (𝜑 → (0g𝑅) = (0g‘(Scalar‘(ringLMod‘𝑅))))
2523, 24eqtrid 2788 . . . . 5 (𝜑0 = (0g‘(Scalar‘(ringLMod‘𝑅))))
2625breq2d 5117 . . . 4 (𝜑 → (𝑎 finSupp 0𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅)))))
274fvexi 6856 . . . . . . . . 9 𝐵 ∈ V
2827a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
2928, 16ssexd 5281 . . . . . . 7 (𝜑𝐼 ∈ V)
3029mptexd 7174 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)) ∈ V)
315a1i 11 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
32 rlmplusg 20665 . . . . . . 7 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3332a1i 11 . . . . . 6 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3430, 13, 15, 31, 33gsumpropd 18533 . . . . 5 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))
3534eqeq2d 2747 . . . 4 (𝜑 → (𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) ↔ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))))
3626, 35anbi12d 631 . . 3 (𝜑 → ((𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ (𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3722, 36rexeqbidv 3320 . 2 (𝜑 → (∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3817, 37bitr4d 281 1 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  m cmap 8765   finSupp cfsupp 9305  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321   Σg cgsu 17322  Ringcrg 19964  LModclmod 20322  LSpanclspn 20432  ringLModcrglmod 20630  RSpancrsp 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lmhm 20483  df-lbs 20536  df-sra 20633  df-rgmod 20634  df-rsp 20636  df-nzr 20728  df-dsmm 21138  df-frlm 21153  df-uvc 21189
This theorem is referenced by:  elrspunidl  32203
  Copyright terms: Public domain W3C validator