Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrsp Structured version   Visualization version   GIF version

Theorem elrsp 33350
Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
elrsp.n 𝑁 = (RSpan‘𝑅)
elrsp.b 𝐵 = (Base‘𝑅)
elrsp.1 0 = (0g𝑅)
elrsp.x · = (.r𝑅)
elrsp.r (𝜑𝑅 ∈ Ring)
elrsp.i (𝜑𝐼𝐵)
Assertion
Ref Expression
elrsp (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Distinct variable groups:   · ,𝑎,𝑖   𝐵,𝑎   𝐼,𝑎,𝑖   𝑁,𝑎   𝑅,𝑎,𝑖   𝑋,𝑎   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝑁(𝑖)   𝑋(𝑖)   0 (𝑖,𝑎)

Proof of Theorem elrsp
StepHypRef Expression
1 elrsp.n . . . 4 𝑁 = (RSpan‘𝑅)
2 rspval 21128 . . . 4 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
31, 2eqtri 2753 . . 3 𝑁 = (LSpan‘(ringLMod‘𝑅))
4 elrsp.b . . . 4 𝐵 = (Base‘𝑅)
5 rlmbas 21107 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
64, 5eqtri 2753 . . 3 𝐵 = (Base‘(ringLMod‘𝑅))
7 eqid 2730 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
8 eqid 2730 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
9 eqid 2730 . . 3 (0g‘(Scalar‘(ringLMod‘𝑅))) = (0g‘(Scalar‘(ringLMod‘𝑅)))
10 elrsp.x . . . 4 · = (.r𝑅)
11 rlmvsca 21114 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2753 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 elrsp.r . . . 4 (𝜑𝑅 ∈ Ring)
14 rlmlmod 21117 . . . 4 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
1513, 14syl 17 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
16 elrsp.i . . 3 (𝜑𝐼𝐵)
173, 6, 7, 8, 9, 12, 15, 16ellspds 33346 . 2 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
18 rlmsca 21112 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1913, 18syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
2019fveq2d 6865 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
214, 20eqtrid 2777 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
2221oveq1d 7405 . . 3 (𝜑 → (𝐵m 𝐼) = ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼))
23 elrsp.1 . . . . . 6 0 = (0g𝑅)
2419fveq2d 6865 . . . . . 6 (𝜑 → (0g𝑅) = (0g‘(Scalar‘(ringLMod‘𝑅))))
2523, 24eqtrid 2777 . . . . 5 (𝜑0 = (0g‘(Scalar‘(ringLMod‘𝑅))))
2625breq2d 5122 . . . 4 (𝜑 → (𝑎 finSupp 0𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅)))))
274fvexi 6875 . . . . . . . . 9 𝐵 ∈ V
2827a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
2928, 16ssexd 5282 . . . . . . 7 (𝜑𝐼 ∈ V)
3029mptexd 7201 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)) ∈ V)
315a1i 11 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
32 rlmplusg 21108 . . . . . . 7 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3332a1i 11 . . . . . 6 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3430, 13, 15, 31, 33gsumpropd 18612 . . . . 5 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))
3534eqeq2d 2741 . . . 4 (𝜑 → (𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) ↔ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))))
3626, 35anbi12d 632 . . 3 (𝜑 → ((𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ (𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3722, 36rexeqbidv 3322 . 2 (𝜑 → (∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3817, 37bitr4d 282 1 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  m cmap 8802   finSupp cfsupp 9319  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Ringcrg 20149  LModclmod 20773  LSpanclspn 20884  ringLModcrglmod 21086  RSpancrsp 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-nzr 20429  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lbs 20989  df-sra 21087  df-rgmod 21088  df-rsp 21126  df-dsmm 21648  df-frlm 21663  df-uvc 21699
This theorem is referenced by:  elrspunidl  33406  elrspunsn  33407
  Copyright terms: Public domain W3C validator