Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrsp Structured version   Visualization version   GIF version

Theorem elrsp 31075
Description: Write the elements of a ring span as finite linear combinations. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
elrsp.n 𝑁 = (RSpan‘𝑅)
elrsp.b 𝐵 = (Base‘𝑅)
elrsp.1 0 = (0g𝑅)
elrsp.x · = (.r𝑅)
elrsp.r (𝜑𝑅 ∈ Ring)
elrsp.i (𝜑𝐼𝐵)
Assertion
Ref Expression
elrsp (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Distinct variable groups:   · ,𝑎,𝑖   𝐵,𝑎   𝐼,𝑎,𝑖   𝑁,𝑎   𝑅,𝑎,𝑖   𝑋,𝑎   𝜑,𝑎,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝑁(𝑖)   𝑋(𝑖)   0 (𝑖,𝑎)

Proof of Theorem elrsp
StepHypRef Expression
1 elrsp.n . . . 4 𝑁 = (RSpan‘𝑅)
2 rspval 20018 . . . 4 (RSpan‘𝑅) = (LSpan‘(ringLMod‘𝑅))
31, 2eqtri 2782 . . 3 𝑁 = (LSpan‘(ringLMod‘𝑅))
4 elrsp.b . . . 4 𝐵 = (Base‘𝑅)
5 rlmbas 20020 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
64, 5eqtri 2782 . . 3 𝐵 = (Base‘(ringLMod‘𝑅))
7 eqid 2759 . . 3 (Base‘(Scalar‘(ringLMod‘𝑅))) = (Base‘(Scalar‘(ringLMod‘𝑅)))
8 eqid 2759 . . 3 (Scalar‘(ringLMod‘𝑅)) = (Scalar‘(ringLMod‘𝑅))
9 eqid 2759 . . 3 (0g‘(Scalar‘(ringLMod‘𝑅))) = (0g‘(Scalar‘(ringLMod‘𝑅)))
10 elrsp.x . . . 4 · = (.r𝑅)
11 rlmvsca 20027 . . . 4 (.r𝑅) = ( ·𝑠 ‘(ringLMod‘𝑅))
1210, 11eqtri 2782 . . 3 · = ( ·𝑠 ‘(ringLMod‘𝑅))
13 elrsp.r . . . 4 (𝜑𝑅 ∈ Ring)
14 rlmlmod 20030 . . . 4 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
1513, 14syl 17 . . 3 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
16 elrsp.i . . 3 (𝜑𝐼𝐵)
173, 6, 7, 8, 9, 12, 15, 16ellspds 31070 . 2 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
18 rlmsca 20025 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 = (Scalar‘(ringLMod‘𝑅)))
1913, 18syl 17 . . . . . 6 (𝜑𝑅 = (Scalar‘(ringLMod‘𝑅)))
2019fveq2d 6655 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘(ringLMod‘𝑅))))
214, 20syl5eq 2806 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘(ringLMod‘𝑅))))
2221oveq1d 7158 . . 3 (𝜑 → (𝐵m 𝐼) = ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼))
23 elrsp.1 . . . . . 6 0 = (0g𝑅)
2419fveq2d 6655 . . . . . 6 (𝜑 → (0g𝑅) = (0g‘(Scalar‘(ringLMod‘𝑅))))
2523, 24syl5eq 2806 . . . . 5 (𝜑0 = (0g‘(Scalar‘(ringLMod‘𝑅))))
2625breq2d 5037 . . . 4 (𝜑 → (𝑎 finSupp 0𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅)))))
274fvexi 6665 . . . . . . . . 9 𝐵 ∈ V
2827a1i 11 . . . . . . . 8 (𝜑𝐵 ∈ V)
2928, 16ssexd 5187 . . . . . . 7 (𝜑𝐼 ∈ V)
3029mptexd 6971 . . . . . 6 (𝜑 → (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)) ∈ V)
315a1i 11 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
32 rlmplusg 20021 . . . . . . 7 (+g𝑅) = (+g‘(ringLMod‘𝑅))
3332a1i 11 . . . . . 6 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
3430, 13, 15, 31, 33gsumpropd 17939 . . . . 5 (𝜑 → (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))
3534eqeq2d 2770 . . . 4 (𝜑 → (𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))) ↔ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))))
3626, 35anbi12d 634 . . 3 (𝜑 → ((𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ (𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3722, 36rexeqbidv 3318 . 2 (𝜑 → (∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖)))) ↔ ∃𝑎 ∈ ((Base‘(Scalar‘(ringLMod‘𝑅))) ↑m 𝐼)(𝑎 finSupp (0g‘(Scalar‘(ringLMod‘𝑅))) ∧ 𝑋 = ((ringLMod‘𝑅) Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
3817, 37bitr4d 285 1 (𝜑 → (𝑋 ∈ (𝑁𝐼) ↔ ∃𝑎 ∈ (𝐵m 𝐼)(𝑎 finSupp 0𝑋 = (𝑅 Σg (𝑖𝐼 ↦ ((𝑎𝑖) · 𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wrex 3069  Vcvv 3407  wss 3854   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  m cmap 8409   finSupp cfsupp 8851  Basecbs 16526  +gcplusg 16608  .rcmulr 16609  Scalarcsca 16611   ·𝑠 cvsca 16612  0gc0g 16756   Σg cgsu 16757  Ringcrg 19350  LModclmod 19687  LSpanclspn 19796  ringLModcrglmod 19994  RSpancrsp 19996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-om 7573  df-1st 7686  df-2nd 7687  df-supp 7829  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8473  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-fsupp 8852  df-sup 8924  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-7 11727  df-8 11728  df-9 11729  df-n0 11920  df-z 12006  df-dec 12123  df-uz 12268  df-fz 12925  df-fzo 13068  df-seq 13404  df-hash 13726  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-ip 16626  df-tset 16627  df-ple 16628  df-ds 16630  df-hom 16632  df-cco 16633  df-0g 16758  df-gsum 16759  df-prds 16764  df-pws 16766  df-mre 16900  df-mrc 16901  df-acs 16903  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-mhm 18007  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-mulg 18277  df-subg 18328  df-ghm 18408  df-cntz 18499  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-subrg 19586  df-lmod 19689  df-lss 19757  df-lsp 19797  df-lmhm 19847  df-lbs 19900  df-sra 19997  df-rgmod 19998  df-rsp 20000  df-nzr 20084  df-dsmm 20482  df-frlm 20497  df-uvc 20533
This theorem is referenced by:  elrspunidl  31112
  Copyright terms: Public domain W3C validator