Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrd Structured version   Visualization version   GIF version

Theorem mnringmulrd 44217
Description: The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrd.2 𝐵 = (Base‘𝐹)
mnringmulrd.3 · = (.r𝑅)
mnringmulrd.4 0 = (0g𝑅)
mnringmulrd.5 𝐴 = (Base‘𝑀)
mnringmulrd.6 + = (+g𝑀)
mnringmulrd.7 (𝜑𝑅𝑈)
mnringmulrd.8 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringmulrd (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝐴,𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏,𝑖,𝑥,𝑦   𝑀,𝑎,𝑏,𝑖,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑥,𝑦,𝑖,𝑎,𝑏)   + (𝑥,𝑦,𝑖,𝑎,𝑏)   · (𝑥,𝑦,𝑖,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐹(𝑥,𝑦,𝑖,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑖,𝑎,𝑏)   0 (𝑥,𝑦,𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrd
StepHypRef Expression
1 mnringmulrd.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrd.2 . . . 4 𝐵 = (Base‘𝐹)
3 mnringmulrd.5 . . . 4 𝐴 = (Base‘𝑀)
4 eqid 2735 . . . 4 (𝑅 freeLMod 𝐴) = (𝑅 freeLMod 𝐴)
5 mnringmulrd.7 . . . 4 (𝜑𝑅𝑈)
6 mnringmulrd.8 . . . 4 (𝜑𝑀𝑊)
71, 2, 3, 4, 5, 6mnringbaserd 44209 . . 3 (𝜑𝐵 = (Base‘(𝑅 freeLMod 𝐴)))
83fvexi 6921 . . . . . 6 𝐴 ∈ V
98, 8mpoex 8103 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))) ∈ V
109a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))) ∈ V)
111ovexi 7465 . . . . 5 𝐹 ∈ V
1211a1i 11 . . . 4 (𝜑𝐹 ∈ V)
13 ovex 7464 . . . . 5 (𝑅 freeLMod 𝐴) ∈ V
1413a1i 11 . . . 4 (𝜑 → (𝑅 freeLMod 𝐴) ∈ V)
152, 7eqtr3id 2789 . . . 4 (𝜑 → (Base‘𝐹) = (Base‘(𝑅 freeLMod 𝐴)))
161, 3, 4, 5, 6mnringaddgd 44213 . . . . 5 (𝜑 → (+g‘(𝑅 freeLMod 𝐴)) = (+g𝐹))
1716eqcomd 2741 . . . 4 (𝜑 → (+g𝐹) = (+g‘(𝑅 freeLMod 𝐴)))
1810, 12, 14, 15, 17gsumpropd 18704 . . 3 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))) = ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))
197, 7, 18mpoeq123dv 7508 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))))
20 fvex 6920 . . . . 5 (Base‘(𝑅 freeLMod 𝐴)) ∈ V
2120, 20mpoex 8103 . . . 4 (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) ∈ V
22 mulridx 17340 . . . . 5 .r = Slot (.r‘ndx)
2322setsid 17242 . . . 4 (((𝑅 freeLMod 𝐴) ∈ V ∧ (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) ∈ V) → (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩)))
2413, 21, 23mp2an 692 . . 3 (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
25 mnringmulrd.3 . . . . 5 · = (.r𝑅)
26 mnringmulrd.4 . . . . 5 0 = (0g𝑅)
27 mnringmulrd.6 . . . . 5 + = (+g𝑀)
28 eqid 2735 . . . . 5 (Base‘(𝑅 freeLMod 𝐴)) = (Base‘(𝑅 freeLMod 𝐴))
291, 25, 26, 3, 27, 4, 28, 5, 6mnringvald 44204 . . . 4 (𝜑𝐹 = ((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
3029fveq2d 6911 . . 3 (𝜑 → (.r𝐹) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩)))
3124, 30eqtr4id 2794 . 2 (𝜑 → (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
3219, 31eqtrd 2775 1 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  ifcif 4531  cop 4637  cmpt 5231  cfv 6563  (class class class)co 7431  cmpo 7433   sSet csts 17197  ndxcnx 17227  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486   Σg cgsu 17487   freeLMod cfrlm 21784   MndRing cmnring 44202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-seq 14040  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-0g 17488  df-gsum 17489  df-mnring 44203
This theorem is referenced by:  mnringmulrvald  44223
  Copyright terms: Public domain W3C validator