Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrd Structured version   Visualization version   GIF version

Theorem mnringmulrd 43913
Description: The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrd.2 𝐵 = (Base‘𝐹)
mnringmulrd.3 · = (.r𝑅)
mnringmulrd.4 0 = (0g𝑅)
mnringmulrd.5 𝐴 = (Base‘𝑀)
mnringmulrd.6 + = (+g𝑀)
mnringmulrd.7 (𝜑𝑅𝑈)
mnringmulrd.8 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringmulrd (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝐴,𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏,𝑖,𝑥,𝑦   𝑀,𝑎,𝑏,𝑖,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑥,𝑦,𝑖,𝑎,𝑏)   + (𝑥,𝑦,𝑖,𝑎,𝑏)   · (𝑥,𝑦,𝑖,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐹(𝑥,𝑦,𝑖,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑖,𝑎,𝑏)   0 (𝑥,𝑦,𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrd
StepHypRef Expression
1 mnringmulrd.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrd.2 . . . 4 𝐵 = (Base‘𝐹)
3 mnringmulrd.5 . . . 4 𝐴 = (Base‘𝑀)
4 eqid 2726 . . . 4 (𝑅 freeLMod 𝐴) = (𝑅 freeLMod 𝐴)
5 mnringmulrd.7 . . . 4 (𝜑𝑅𝑈)
6 mnringmulrd.8 . . . 4 (𝜑𝑀𝑊)
71, 2, 3, 4, 5, 6mnringbaserd 43905 . . 3 (𝜑𝐵 = (Base‘(𝑅 freeLMod 𝐴)))
83fvexi 6917 . . . . . 6 𝐴 ∈ V
98, 8mpoex 8095 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))) ∈ V
109a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))) ∈ V)
111ovexi 7460 . . . . 5 𝐹 ∈ V
1211a1i 11 . . . 4 (𝜑𝐹 ∈ V)
13 ovex 7459 . . . . 5 (𝑅 freeLMod 𝐴) ∈ V
1413a1i 11 . . . 4 (𝜑 → (𝑅 freeLMod 𝐴) ∈ V)
152, 7eqtr3id 2780 . . . 4 (𝜑 → (Base‘𝐹) = (Base‘(𝑅 freeLMod 𝐴)))
161, 3, 4, 5, 6mnringaddgd 43909 . . . . 5 (𝜑 → (+g‘(𝑅 freeLMod 𝐴)) = (+g𝐹))
1716eqcomd 2732 . . . 4 (𝜑 → (+g𝐹) = (+g‘(𝑅 freeLMod 𝐴)))
1810, 12, 14, 15, 17gsumpropd 18673 . . 3 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))) = ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))
197, 7, 18mpoeq123dv 7502 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))))
20 fvex 6916 . . . . 5 (Base‘(𝑅 freeLMod 𝐴)) ∈ V
2120, 20mpoex 8095 . . . 4 (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) ∈ V
22 mulridx 17310 . . . . 5 .r = Slot (.r‘ndx)
2322setsid 17212 . . . 4 (((𝑅 freeLMod 𝐴) ∈ V ∧ (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) ∈ V) → (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩)))
2413, 21, 23mp2an 690 . . 3 (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
25 mnringmulrd.3 . . . . 5 · = (.r𝑅)
26 mnringmulrd.4 . . . . 5 0 = (0g𝑅)
27 mnringmulrd.6 . . . . 5 + = (+g𝑀)
28 eqid 2726 . . . . 5 (Base‘(𝑅 freeLMod 𝐴)) = (Base‘(𝑅 freeLMod 𝐴))
291, 25, 26, 3, 27, 4, 28, 5, 6mnringvald 43900 . . . 4 (𝜑𝐹 = ((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
3029fveq2d 6907 . . 3 (𝜑 → (.r𝐹) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩)))
3124, 30eqtr4id 2785 . 2 (𝜑 → (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
3219, 31eqtrd 2766 1 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3462  ifcif 4533  cop 4639  cmpt 5238  cfv 6556  (class class class)co 7426  cmpo 7428   sSet csts 17167  ndxcnx 17197  Basecbs 17215  +gcplusg 17268  .rcmulr 17269  0gc0g 17456   Σg cgsu 17457   freeLMod cfrlm 21746   MndRing cmnring 43898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-3 12330  df-seq 14024  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-mulr 17282  df-0g 17458  df-gsum 17459  df-mnring 43899
This theorem is referenced by:  mnringmulrvald  43919
  Copyright terms: Public domain W3C validator