Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringmulrd Structured version   Visualization version   GIF version

Theorem mnringmulrd 44245
Description: The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
Hypotheses
Ref Expression
mnringmulrd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringmulrd.2 𝐵 = (Base‘𝐹)
mnringmulrd.3 · = (.r𝑅)
mnringmulrd.4 0 = (0g𝑅)
mnringmulrd.5 𝐴 = (Base‘𝑀)
mnringmulrd.6 + = (+g𝑀)
mnringmulrd.7 (𝜑𝑅𝑈)
mnringmulrd.8 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringmulrd (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝐴,𝑎,𝑏,𝑥,𝑦   𝑅,𝑎,𝑏,𝑖,𝑥,𝑦   𝑀,𝑎,𝑏,𝑖,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑏)   𝐴(𝑖)   𝐵(𝑥,𝑦,𝑖,𝑎,𝑏)   + (𝑥,𝑦,𝑖,𝑎,𝑏)   · (𝑥,𝑦,𝑖,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑖,𝑎,𝑏)   𝐹(𝑥,𝑦,𝑖,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑖,𝑎,𝑏)   0 (𝑥,𝑦,𝑖,𝑎,𝑏)

Proof of Theorem mnringmulrd
StepHypRef Expression
1 mnringmulrd.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
2 mnringmulrd.2 . . . 4 𝐵 = (Base‘𝐹)
3 mnringmulrd.5 . . . 4 𝐴 = (Base‘𝑀)
4 eqid 2736 . . . 4 (𝑅 freeLMod 𝐴) = (𝑅 freeLMod 𝐴)
5 mnringmulrd.7 . . . 4 (𝜑𝑅𝑈)
6 mnringmulrd.8 . . . 4 (𝜑𝑀𝑊)
71, 2, 3, 4, 5, 6mnringbaserd 44237 . . 3 (𝜑𝐵 = (Base‘(𝑅 freeLMod 𝐴)))
83fvexi 6919 . . . . . 6 𝐴 ∈ V
98, 8mpoex 8105 . . . . 5 (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))) ∈ V
109a1i 11 . . . 4 (𝜑 → (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))) ∈ V)
111ovexi 7466 . . . . 5 𝐹 ∈ V
1211a1i 11 . . . 4 (𝜑𝐹 ∈ V)
13 ovex 7465 . . . . 5 (𝑅 freeLMod 𝐴) ∈ V
1413a1i 11 . . . 4 (𝜑 → (𝑅 freeLMod 𝐴) ∈ V)
152, 7eqtr3id 2790 . . . 4 (𝜑 → (Base‘𝐹) = (Base‘(𝑅 freeLMod 𝐴)))
161, 3, 4, 5, 6mnringaddgd 44241 . . . . 5 (𝜑 → (+g‘(𝑅 freeLMod 𝐴)) = (+g𝐹))
1716eqcomd 2742 . . . 4 (𝜑 → (+g𝐹) = (+g‘(𝑅 freeLMod 𝐴)))
1810, 12, 14, 15, 17gsumpropd 18692 . . 3 (𝜑 → (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))) = ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))
197, 7, 18mpoeq123dv 7509 . 2 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))))
20 fvex 6918 . . . . 5 (Base‘(𝑅 freeLMod 𝐴)) ∈ V
2120, 20mpoex 8105 . . . 4 (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) ∈ V
22 mulridx 17339 . . . . 5 .r = Slot (.r‘ndx)
2322setsid 17245 . . . 4 (((𝑅 freeLMod 𝐴) ∈ V ∧ (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) ∈ V) → (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩)))
2413, 21, 23mp2an 692 . . 3 (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
25 mnringmulrd.3 . . . . 5 · = (.r𝑅)
26 mnringmulrd.4 . . . . 5 0 = (0g𝑅)
27 mnringmulrd.6 . . . . 5 + = (+g𝑀)
28 eqid 2736 . . . . 5 (Base‘(𝑅 freeLMod 𝐴)) = (Base‘(𝑅 freeLMod 𝐴))
291, 25, 26, 3, 27, 4, 28, 5, 6mnringvald 44232 . . . 4 (𝜑𝐹 = ((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
3029fveq2d 6909 . . 3 (𝜑 → (.r𝐹) = (.r‘((𝑅 freeLMod 𝐴) sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩)))
3124, 30eqtr4id 2795 . 2 (𝜑 → (𝑥 ∈ (Base‘(𝑅 freeLMod 𝐴)), 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐴)) ↦ ((𝑅 freeLMod 𝐴) Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
3219, 31eqtrd 2776 1 (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3479  ifcif 4524  cop 4631  cmpt 5224  cfv 6560  (class class class)co 7432  cmpo 7434   sSet csts 17201  ndxcnx 17231  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486   freeLMod cfrlm 21767   MndRing cmnring 44230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-seq 14044  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-mulr 17312  df-0g 17487  df-gsum 17488  df-mnring 44231
This theorem is referenced by:  mnringmulrvald  44251
  Copyright terms: Public domain W3C validator