HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyc Structured version   Visualization version   GIF version

Theorem normpyc 31130
Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyc ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))

Proof of Theorem normpyc
StepHypRef Expression
1 normcl 31109 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21resqcld 14036 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℝ)
32recnd 11149 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℂ)
43addridd 11322 . . . . . . 7 (𝐴 ∈ ℋ → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
6 normcl 31109 . . . . . . . . 9 (𝐵 ∈ ℋ → (norm𝐵) ∈ ℝ)
76sqge0d 14048 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ ((norm𝐵)↑2))
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((norm𝐵)↑2))
96resqcld 14036 . . . . . . . 8 (𝐵 ∈ ℋ → ((norm𝐵)↑2) ∈ ℝ)
10 0re 11123 . . . . . . . . 9 0 ∈ ℝ
11 leadd2 11595 . . . . . . . . 9 ((0 ∈ ℝ ∧ ((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1210, 11mp3an1 1450 . . . . . . . 8 ((((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
139, 2, 12syl2anr 597 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
148, 13mpbid 232 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
155, 14eqbrtrrd 5119 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1615adantr 480 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
17 normpyth 31129 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1817imp 406 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1916, 18breqtrrd 5123 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2))
2019ex 412 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
211adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm𝐴) ∈ ℝ)
22 hvaddcl 30996 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
23 normcl 31109 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
2422, 23syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
25 normge0 31110 . . . 4 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
2625adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm𝐴))
27 normge0 31110 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ (norm‘(𝐴 + 𝐵)))
2822, 27syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm‘(𝐴 + 𝐵)))
2921, 24, 26, 28le2sqd 14168 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴) ≤ (norm‘(𝐴 + 𝐵)) ↔ ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
3020, 29sylibrd 259 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  cr 11014  0cc0 11015   + caddc 11018  cle 11156  2c2 12189  cexp 13972  chba 30903   + cva 30904   ·ih csp 30906  normcno 30907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-hfvadd 30984  ax-hv0cl 30987  ax-hvmul0 30994  ax-hfi 31063  ax-his1 31066  ax-his2 31067  ax-his3 31068  ax-his4 31069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-hnorm 30952
This theorem is referenced by:  pjnormi  31705
  Copyright terms: Public domain W3C validator