HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyc Structured version   Visualization version   GIF version

Theorem normpyc 31076
Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyc ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))

Proof of Theorem normpyc
StepHypRef Expression
1 normcl 31055 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21resqcld 14138 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℝ)
32recnd 11283 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℂ)
43addridd 11455 . . . . . . 7 (𝐴 ∈ ℋ → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
54adantr 479 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
6 normcl 31055 . . . . . . . . 9 (𝐵 ∈ ℋ → (norm𝐵) ∈ ℝ)
76sqge0d 14150 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ ((norm𝐵)↑2))
87adantl 480 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((norm𝐵)↑2))
96resqcld 14138 . . . . . . . 8 (𝐵 ∈ ℋ → ((norm𝐵)↑2) ∈ ℝ)
10 0re 11257 . . . . . . . . 9 0 ∈ ℝ
11 leadd2 11724 . . . . . . . . 9 ((0 ∈ ℝ ∧ ((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1210, 11mp3an1 1445 . . . . . . . 8 ((((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
139, 2, 12syl2anr 595 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
148, 13mpbid 231 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
155, 14eqbrtrrd 5169 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1615adantr 479 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
17 normpyth 31075 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1817imp 405 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1916, 18breqtrrd 5173 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2))
2019ex 411 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
211adantr 479 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm𝐴) ∈ ℝ)
22 hvaddcl 30942 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
23 normcl 31055 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
2422, 23syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
25 normge0 31056 . . . 4 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
2625adantr 479 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm𝐴))
27 normge0 31056 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ (norm‘(𝐴 + 𝐵)))
2822, 27syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm‘(𝐴 + 𝐵)))
2921, 24, 26, 28le2sqd 14269 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴) ≤ (norm‘(𝐴 + 𝐵)) ↔ ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
3020, 29sylibrd 258 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099   class class class wbr 5145  cfv 6546  (class class class)co 7416  cr 11148  0cc0 11149   + caddc 11152  cle 11290  2c2 12313  cexp 14075  chba 30849   + cva 30850   ·ih csp 30852  normcno 30853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-hfvadd 30930  ax-hv0cl 30933  ax-hvmul0 30940  ax-hfi 31009  ax-his1 31012  ax-his2 31013  ax-his3 31014  ax-his4 31015
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-sup 9478  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-seq 14016  df-exp 14076  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-hnorm 30898
This theorem is referenced by:  pjnormi  31651
  Copyright terms: Public domain W3C validator