| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normpyc | Structured version Visualization version GIF version | ||
| Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normpyc | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl 31111 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
| 2 | 1 | resqcld 14148 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) ∈ ℝ) |
| 3 | 2 | recnd 11268 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) ∈ ℂ) |
| 4 | 3 | addridd 11440 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (((normℎ‘𝐴)↑2) + 0) = ((normℎ‘𝐴)↑2)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘𝐴)↑2) + 0) = ((normℎ‘𝐴)↑2)) |
| 6 | normcl 31111 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℝ) | |
| 7 | 6 | sqge0d 14160 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → 0 ≤ ((normℎ‘𝐵)↑2)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((normℎ‘𝐵)↑2)) |
| 9 | 6 | resqcld 14148 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → ((normℎ‘𝐵)↑2) ∈ ℝ) |
| 10 | 0re 11242 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 11 | leadd2 11711 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ ((normℎ‘𝐵)↑2) ∈ ℝ ∧ ((normℎ‘𝐴)↑2) ∈ ℝ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | |
| 12 | 10, 11 | mp3an1 1450 | . . . . . . . 8 ⊢ ((((normℎ‘𝐵)↑2) ∈ ℝ ∧ ((normℎ‘𝐴)↑2) ∈ ℝ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) |
| 13 | 9, 2, 12 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) |
| 14 | 8, 13 | mpbid 232 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 15 | 5, 14 | eqbrtrrd 5148 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴)↑2) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘𝐴)↑2) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 17 | normpyth 31131 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | |
| 18 | 17 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 19 | 16, 18 | breqtrrd 5152 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) |
| 20 | 19 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2))) |
| 21 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘𝐴) ∈ ℝ) |
| 22 | hvaddcl 30998 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
| 23 | normcl 31111 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (normℎ‘(𝐴 +ℎ 𝐵)) ∈ ℝ) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ∈ ℝ) |
| 25 | normge0 31112 | . . . 4 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (normℎ‘𝐴)) |
| 27 | normge0 31112 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → 0 ≤ (normℎ‘(𝐴 +ℎ 𝐵))) | |
| 28 | 22, 27 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (normℎ‘(𝐴 +ℎ 𝐵))) |
| 29 | 21, 24, 26, 28 | le2sqd 14280 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)) ↔ ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2))) |
| 30 | 20, 29 | sylibrd 259 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 0cc0 11134 + caddc 11137 ≤ cle 11275 2c2 12300 ↑cexp 14084 ℋchba 30905 +ℎ cva 30906 ·ih csp 30908 normℎcno 30909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-hfvadd 30986 ax-hv0cl 30989 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-hnorm 30954 |
| This theorem is referenced by: pjnormi 31707 |
| Copyright terms: Public domain | W3C validator |