| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normpyc | Structured version Visualization version GIF version | ||
| Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normpyc | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl 31103 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
| 2 | 1 | resqcld 14032 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) ∈ ℝ) |
| 3 | 2 | recnd 11140 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) ∈ ℂ) |
| 4 | 3 | addridd 11313 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (((normℎ‘𝐴)↑2) + 0) = ((normℎ‘𝐴)↑2)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘𝐴)↑2) + 0) = ((normℎ‘𝐴)↑2)) |
| 6 | normcl 31103 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℝ) | |
| 7 | 6 | sqge0d 14044 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → 0 ≤ ((normℎ‘𝐵)↑2)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((normℎ‘𝐵)↑2)) |
| 9 | 6 | resqcld 14032 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → ((normℎ‘𝐵)↑2) ∈ ℝ) |
| 10 | 0re 11114 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 11 | leadd2 11586 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ ((normℎ‘𝐵)↑2) ∈ ℝ ∧ ((normℎ‘𝐴)↑2) ∈ ℝ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | |
| 12 | 10, 11 | mp3an1 1450 | . . . . . . . 8 ⊢ ((((normℎ‘𝐵)↑2) ∈ ℝ ∧ ((normℎ‘𝐴)↑2) ∈ ℝ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) |
| 13 | 9, 2, 12 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) |
| 14 | 8, 13 | mpbid 232 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 15 | 5, 14 | eqbrtrrd 5115 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴)↑2) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘𝐴)↑2) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 17 | normpyth 31123 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | |
| 18 | 17 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 19 | 16, 18 | breqtrrd 5119 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) |
| 20 | 19 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2))) |
| 21 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘𝐴) ∈ ℝ) |
| 22 | hvaddcl 30990 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
| 23 | normcl 31103 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (normℎ‘(𝐴 +ℎ 𝐵)) ∈ ℝ) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ∈ ℝ) |
| 25 | normge0 31104 | . . . 4 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (normℎ‘𝐴)) |
| 27 | normge0 31104 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → 0 ≤ (normℎ‘(𝐴 +ℎ 𝐵))) | |
| 28 | 22, 27 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (normℎ‘(𝐴 +ℎ 𝐵))) |
| 29 | 21, 24, 26, 28 | le2sqd 14164 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)) ↔ ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2))) |
| 30 | 20, 29 | sylibrd 259 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 + caddc 11009 ≤ cle 11147 2c2 12180 ↑cexp 13968 ℋchba 30897 +ℎ cva 30898 ·ih csp 30900 normℎcno 30901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-hfvadd 30978 ax-hv0cl 30981 ax-hvmul0 30988 ax-hfi 31057 ax-his1 31060 ax-his2 31061 ax-his3 31062 ax-his4 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-hnorm 30946 |
| This theorem is referenced by: pjnormi 31699 |
| Copyright terms: Public domain | W3C validator |