HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normpyc Structured version   Visualization version   GIF version

Theorem normpyc 31124
Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
normpyc ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))

Proof of Theorem normpyc
StepHypRef Expression
1 normcl 31103 . . . . . . . . . 10 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
21resqcld 14032 . . . . . . . . 9 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℝ)
32recnd 11140 . . . . . . . 8 (𝐴 ∈ ℋ → ((norm𝐴)↑2) ∈ ℂ)
43addridd 11313 . . . . . . 7 (𝐴 ∈ ℋ → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
54adantr 480 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) = ((norm𝐴)↑2))
6 normcl 31103 . . . . . . . . 9 (𝐵 ∈ ℋ → (norm𝐵) ∈ ℝ)
76sqge0d 14044 . . . . . . . 8 (𝐵 ∈ ℋ → 0 ≤ ((norm𝐵)↑2))
87adantl 481 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((norm𝐵)↑2))
96resqcld 14032 . . . . . . . 8 (𝐵 ∈ ℋ → ((norm𝐵)↑2) ∈ ℝ)
10 0re 11114 . . . . . . . . 9 0 ∈ ℝ
11 leadd2 11586 . . . . . . . . 9 ((0 ∈ ℝ ∧ ((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1210, 11mp3an1 1450 . . . . . . . 8 ((((norm𝐵)↑2) ∈ ℝ ∧ ((norm𝐴)↑2) ∈ ℝ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
139, 2, 12syl2anr 597 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((norm𝐵)↑2) ↔ (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2))))
148, 13mpbid 232 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((norm𝐴)↑2) + 0) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
155, 14eqbrtrrd 5115 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1615adantr 480 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ (((norm𝐴)↑2) + ((norm𝐵)↑2)))
17 normpyth 31123 . . . . 5 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2))))
1817imp 406 . . . 4 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm‘(𝐴 + 𝐵))↑2) = (((norm𝐴)↑2) + ((norm𝐵)↑2)))
1916, 18breqtrrd 5119 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2))
2019ex 412 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
211adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm𝐴) ∈ ℝ)
22 hvaddcl 30990 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) ∈ ℋ)
23 normcl 31103 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
2422, 23syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 + 𝐵)) ∈ ℝ)
25 normge0 31104 . . . 4 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
2625adantr 480 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm𝐴))
27 normge0 31104 . . . 4 ((𝐴 + 𝐵) ∈ ℋ → 0 ≤ (norm‘(𝐴 + 𝐵)))
2822, 27syl 17 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (norm‘(𝐴 + 𝐵)))
2921, 24, 26, 28le2sqd 14164 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((norm𝐴) ≤ (norm‘(𝐴 + 𝐵)) ↔ ((norm𝐴)↑2) ≤ ((norm‘(𝐴 + 𝐵))↑2)))
3020, 29sylibrd 259 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (norm𝐴) ≤ (norm‘(𝐴 + 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006   + caddc 11009  cle 11147  2c2 12180  cexp 13968  chba 30897   + cva 30898   ·ih csp 30900  normcno 30901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hfvadd 30978  ax-hv0cl 30981  ax-hvmul0 30988  ax-hfi 31057  ax-his1 31060  ax-his2 31061  ax-his3 31062  ax-his4 31063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-hnorm 30946
This theorem is referenced by:  pjnormi  31699
  Copyright terms: Public domain W3C validator