| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normpyc | Structured version Visualization version GIF version | ||
| Description: Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normpyc | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl 31054 | . . . . . . . . . 10 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
| 2 | 1 | resqcld 14090 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) ∈ ℝ) |
| 3 | 2 | recnd 11202 | . . . . . . . 8 ⊢ (𝐴 ∈ ℋ → ((normℎ‘𝐴)↑2) ∈ ℂ) |
| 4 | 3 | addridd 11374 | . . . . . . 7 ⊢ (𝐴 ∈ ℋ → (((normℎ‘𝐴)↑2) + 0) = ((normℎ‘𝐴)↑2)) |
| 5 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘𝐴)↑2) + 0) = ((normℎ‘𝐴)↑2)) |
| 6 | normcl 31054 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℝ) | |
| 7 | 6 | sqge0d 14102 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → 0 ≤ ((normℎ‘𝐵)↑2)) |
| 8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ ((normℎ‘𝐵)↑2)) |
| 9 | 6 | resqcld 14090 | . . . . . . . 8 ⊢ (𝐵 ∈ ℋ → ((normℎ‘𝐵)↑2) ∈ ℝ) |
| 10 | 0re 11176 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 11 | leadd2 11647 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ ((normℎ‘𝐵)↑2) ∈ ℝ ∧ ((normℎ‘𝐴)↑2) ∈ ℝ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | |
| 12 | 10, 11 | mp3an1 1450 | . . . . . . . 8 ⊢ ((((normℎ‘𝐵)↑2) ∈ ℝ ∧ ((normℎ‘𝐴)↑2) ∈ ℝ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) |
| 13 | 9, 2, 12 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (0 ≤ ((normℎ‘𝐵)↑2) ↔ (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) |
| 14 | 8, 13 | mpbid 232 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((normℎ‘𝐴)↑2) + 0) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 15 | 5, 14 | eqbrtrrd 5131 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴)↑2) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 16 | 15 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘𝐴)↑2) ≤ (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 17 | normpyth 31074 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2)))) | |
| 18 | 17 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = (((normℎ‘𝐴)↑2) + ((normℎ‘𝐵)↑2))) |
| 19 | 16, 18 | breqtrrd 5135 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐴 ·ih 𝐵) = 0) → ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2)) |
| 20 | 19 | ex 412 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2))) |
| 21 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘𝐴) ∈ ℝ) |
| 22 | hvaddcl 30941 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) ∈ ℋ) | |
| 23 | normcl 31054 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → (normℎ‘(𝐴 +ℎ 𝐵)) ∈ ℝ) | |
| 24 | 22, 23 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 +ℎ 𝐵)) ∈ ℝ) |
| 25 | normge0 31055 | . . . 4 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (normℎ‘𝐴)) |
| 27 | normge0 31055 | . . . 4 ⊢ ((𝐴 +ℎ 𝐵) ∈ ℋ → 0 ≤ (normℎ‘(𝐴 +ℎ 𝐵))) | |
| 28 | 22, 27 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → 0 ≤ (normℎ‘(𝐴 +ℎ 𝐵))) |
| 29 | 21, 24, 26, 28 | le2sqd 14222 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)) ↔ ((normℎ‘𝐴)↑2) ≤ ((normℎ‘(𝐴 +ℎ 𝐵))↑2))) |
| 30 | 20, 29 | sylibrd 259 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·ih 𝐵) = 0 → (normℎ‘𝐴) ≤ (normℎ‘(𝐴 +ℎ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 ≤ cle 11209 2c2 12241 ↑cexp 14026 ℋchba 30848 +ℎ cva 30849 ·ih csp 30851 normℎcno 30852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-hfvadd 30929 ax-hv0cl 30932 ax-hvmul0 30939 ax-hfi 31008 ax-his1 31011 ax-his2 31012 ax-his3 31013 ax-his4 31014 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-hnorm 30897 |
| This theorem is referenced by: pjnormi 31650 |
| Copyright terms: Public domain | W3C validator |