Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  i2linesd Structured version   Visualization version   GIF version

Theorem i2linesd 49591
Description: Solve for the intersection of two lines expressed in Y = MX+B form (note that the lines cannot be vertical). Here we use deduction form. We just solve for X, since Y can be trivially found by using X. This is an example of how to use the algebra helpers. Notice that because this proof uses algebra helpers, the main steps of the proof are higher level and easier to follow by a human reader. (Contributed by David A. Wheeler, 15-Oct-2018.)
Hypotheses
Ref Expression
i2linesd.1 (𝜑𝐴 ∈ ℂ)
i2linesd.2 (𝜑𝐵 ∈ ℂ)
i2linesd.3 (𝜑𝐶 ∈ ℂ)
i2linesd.4 (𝜑𝐷 ∈ ℂ)
i2linesd.5 (𝜑𝑋 ∈ ℂ)
i2linesd.6 (𝜑𝑌 = ((𝐴 · 𝑋) + 𝐵))
i2linesd.7 (𝜑𝑌 = ((𝐶 · 𝑋) + 𝐷))
i2linesd.8 (𝜑 → (𝐴𝐶) ≠ 0)
Assertion
Ref Expression
i2linesd (𝜑𝑋 = ((𝐷𝐵) / (𝐴𝐶)))

Proof of Theorem i2linesd
StepHypRef Expression
1 i2linesd.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 i2linesd.3 . . 3 (𝜑𝐶 ∈ ℂ)
31, 2subcld 11592 . 2 (𝜑 → (𝐴𝐶) ∈ ℂ)
4 i2linesd.5 . 2 (𝜑𝑋 ∈ ℂ)
5 i2linesd.8 . 2 (𝜑 → (𝐴𝐶) ≠ 0)
62, 4mulcld 11253 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ ℂ)
7 i2linesd.4 . . . . 5 (𝜑𝐷 ∈ ℂ)
8 i2linesd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
97, 8subcld 11592 . . . 4 (𝜑 → (𝐷𝐵) ∈ ℂ)
101, 4mulcld 11253 . . . . . 6 (𝜑 → (𝐴 · 𝑋) ∈ ℂ)
11 i2linesd.6 . . . . . . 7 (𝜑𝑌 = ((𝐴 · 𝑋) + 𝐵))
12 i2linesd.7 . . . . . . 7 (𝜑𝑌 = ((𝐶 · 𝑋) + 𝐷))
1311, 12eqtr3d 2772 . . . . . 6 (𝜑 → ((𝐴 · 𝑋) + 𝐵) = ((𝐶 · 𝑋) + 𝐷))
1410, 8, 13mvlraddd 11645 . . . . 5 (𝜑 → (𝐴 · 𝑋) = (((𝐶 · 𝑋) + 𝐷) − 𝐵))
156, 7, 8, 14assraddsubd 11649 . . . 4 (𝜑 → (𝐴 · 𝑋) = ((𝐶 · 𝑋) + (𝐷𝐵)))
166, 9, 15mvrladdd 11648 . . 3 (𝜑 → ((𝐴 · 𝑋) − (𝐶 · 𝑋)) = (𝐷𝐵))
171, 4, 2, 16joinlmulsubmuld 49586 . 2 (𝜑 → ((𝐴𝐶) · 𝑋) = (𝐷𝐵))
183, 4, 5, 17mvllmuld 12071 1 (𝜑𝑋 = ((𝐷𝐵) / (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2932  (class class class)co 7403  cc 11125  0cc0 11127   + caddc 11130   · cmul 11132  cmin 11464   / cdiv 11892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator