Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  i2linesd Structured version   Visualization version   GIF version

Theorem i2linesd 49298
Description: Solve for the intersection of two lines expressed in Y = MX+B form (note that the lines cannot be vertical). Here we use deduction form. We just solve for X, since Y can be trivially found by using X. This is an example of how to use the algebra helpers. Notice that because this proof uses algebra helpers, the main steps of the proof are higher level and easier to follow by a human reader. (Contributed by David A. Wheeler, 15-Oct-2018.)
Hypotheses
Ref Expression
i2linesd.1 (𝜑𝐴 ∈ ℂ)
i2linesd.2 (𝜑𝐵 ∈ ℂ)
i2linesd.3 (𝜑𝐶 ∈ ℂ)
i2linesd.4 (𝜑𝐷 ∈ ℂ)
i2linesd.5 (𝜑𝑋 ∈ ℂ)
i2linesd.6 (𝜑𝑌 = ((𝐴 · 𝑋) + 𝐵))
i2linesd.7 (𝜑𝑌 = ((𝐶 · 𝑋) + 𝐷))
i2linesd.8 (𝜑 → (𝐴𝐶) ≠ 0)
Assertion
Ref Expression
i2linesd (𝜑𝑋 = ((𝐷𝐵) / (𝐴𝐶)))

Proof of Theorem i2linesd
StepHypRef Expression
1 i2linesd.1 . . 3 (𝜑𝐴 ∈ ℂ)
2 i2linesd.3 . . 3 (𝜑𝐶 ∈ ℂ)
31, 2subcld 11620 . 2 (𝜑 → (𝐴𝐶) ∈ ℂ)
4 i2linesd.5 . 2 (𝜑𝑋 ∈ ℂ)
5 i2linesd.8 . 2 (𝜑 → (𝐴𝐶) ≠ 0)
62, 4mulcld 11281 . . . 4 (𝜑 → (𝐶 · 𝑋) ∈ ℂ)
7 i2linesd.4 . . . . 5 (𝜑𝐷 ∈ ℂ)
8 i2linesd.2 . . . . 5 (𝜑𝐵 ∈ ℂ)
97, 8subcld 11620 . . . 4 (𝜑 → (𝐷𝐵) ∈ ℂ)
101, 4mulcld 11281 . . . . . 6 (𝜑 → (𝐴 · 𝑋) ∈ ℂ)
11 i2linesd.6 . . . . . . 7 (𝜑𝑌 = ((𝐴 · 𝑋) + 𝐵))
12 i2linesd.7 . . . . . . 7 (𝜑𝑌 = ((𝐶 · 𝑋) + 𝐷))
1311, 12eqtr3d 2779 . . . . . 6 (𝜑 → ((𝐴 · 𝑋) + 𝐵) = ((𝐶 · 𝑋) + 𝐷))
1410, 8, 13mvlraddd 11673 . . . . 5 (𝜑 → (𝐴 · 𝑋) = (((𝐶 · 𝑋) + 𝐷) − 𝐵))
156, 7, 8, 14assraddsubd 11677 . . . 4 (𝜑 → (𝐴 · 𝑋) = ((𝐶 · 𝑋) + (𝐷𝐵)))
166, 9, 15mvrladdd 11676 . . 3 (𝜑 → ((𝐴 · 𝑋) − (𝐶 · 𝑋)) = (𝐷𝐵))
171, 4, 2, 16joinlmulsubmuld 49293 . 2 (𝜑 → ((𝐴𝐶) · 𝑋) = (𝐷𝐵))
183, 4, 5, 17mvllmuld 12099 1 (𝜑𝑋 = ((𝐷𝐵) / (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  (class class class)co 7431  cc 11153  0cc0 11155   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator