| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrladdd | Structured version Visualization version GIF version | ||
| Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| mvrraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mvrraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mvrraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
| Ref | Expression |
|---|---|
| mvrladdd | ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrraddd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | mvrraddd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | mvrraddd.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 4 | 2, 1, 3 | comraddd 11388 | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| 5 | 1, 2, 4 | mvrraddd 11590 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 − cmin 11405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 |
| This theorem is referenced by: 2txmxeqx 12321 cvgcmpce 15784 mertens 15852 sin01bnd 16153 cos01bnd 16154 eirrlem 16172 bitsmod 16406 dveflem 25883 mtest 26313 tangtx 26414 efiarg 26516 quart1lem 26765 efiatan2 26827 log2tlbnd 26855 jensenlem2 26898 fsumharmonic 26922 chtublem 27122 bcctr 27186 pcbcctr 27187 bcp1ctr 27190 bposlem9 27203 lgsquadlem1 27291 selberg2lem 27461 logdivbnd 27467 pntrsumo1 27476 pntrsumbnd2 27478 pntrlog2bndlem6 27494 pntpbnd1a 27496 constrrtll 33721 constrrtlc1 33722 constrimcl 33760 cos9thpiminplylem1 33772 cos9thpiminplylem2 33773 hgt750lemd 34639 bcprod 35725 dnizphlfeqhlf 36464 sumcubes 42301 flt4lem5elem 42639 jm3.1lem1 43006 sqrtcval 43630 fzisoeu 45298 supxrgelem 45333 sigarcol 46862 dignn0flhalflem1 48604 1subrec1sub 48694 i2linesd 49768 |
| Copyright terms: Public domain | W3C validator |