| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrladdd | Structured version Visualization version GIF version | ||
| Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| mvrraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mvrraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mvrraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
| Ref | Expression |
|---|---|
| mvrladdd | ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrraddd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | mvrraddd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | mvrraddd.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 4 | 2, 1, 3 | comraddd 11395 | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| 5 | 1, 2, 4 | mvrraddd 11597 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 − cmin 11412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 |
| This theorem is referenced by: 2txmxeqx 12328 cvgcmpce 15791 mertens 15859 sin01bnd 16160 cos01bnd 16161 eirrlem 16179 bitsmod 16413 dveflem 25890 mtest 26320 tangtx 26421 efiarg 26523 quart1lem 26772 efiatan2 26834 log2tlbnd 26862 jensenlem2 26905 fsumharmonic 26929 chtublem 27129 bcctr 27193 pcbcctr 27194 bcp1ctr 27197 bposlem9 27210 lgsquadlem1 27298 selberg2lem 27468 logdivbnd 27474 pntrsumo1 27483 pntrsumbnd2 27485 pntrlog2bndlem6 27501 pntpbnd1a 27503 constrrtll 33728 constrrtlc1 33729 constrimcl 33767 cos9thpiminplylem1 33779 cos9thpiminplylem2 33780 hgt750lemd 34646 bcprod 35732 dnizphlfeqhlf 36471 sumcubes 42308 flt4lem5elem 42646 jm3.1lem1 43013 sqrtcval 43637 fzisoeu 45305 supxrgelem 45340 sigarcol 46869 dignn0flhalflem1 48608 1subrec1sub 48698 i2linesd 49772 |
| Copyright terms: Public domain | W3C validator |