MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrladdd Structured version   Visualization version   GIF version

Theorem mvrladdd 11648
Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.)
Hypotheses
Ref Expression
mvrraddd.1 (𝜑𝐵 ∈ ℂ)
mvrraddd.2 (𝜑𝐶 ∈ ℂ)
mvrraddd.3 (𝜑𝐴 = (𝐵 + 𝐶))
Assertion
Ref Expression
mvrladdd (𝜑 → (𝐴𝐵) = 𝐶)

Proof of Theorem mvrladdd
StepHypRef Expression
1 mvrraddd.2 . 2 (𝜑𝐶 ∈ ℂ)
2 mvrraddd.1 . 2 (𝜑𝐵 ∈ ℂ)
3 mvrraddd.3 . . 3 (𝜑𝐴 = (𝐵 + 𝐶))
42, 1, 3comraddd 11447 . 2 (𝜑𝐴 = (𝐶 + 𝐵))
51, 2, 4mvrraddd 11647 1 (𝜑 → (𝐴𝐵) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7403  cc 11125   + caddc 11130  cmin 11464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-ltxr 11272  df-sub 11466
This theorem is referenced by:  2txmxeqx  12378  cvgcmpce  15832  mertens  15900  sin01bnd  16201  cos01bnd  16202  eirrlem  16220  bitsmod  16453  dveflem  25933  mtest  26363  tangtx  26464  efiarg  26566  quart1lem  26815  efiatan2  26877  log2tlbnd  26905  jensenlem2  26948  fsumharmonic  26972  chtublem  27172  bcctr  27236  pcbcctr  27237  bcp1ctr  27240  bposlem9  27253  lgsquadlem1  27341  selberg2lem  27511  logdivbnd  27517  pntrsumo1  27526  pntrsumbnd2  27528  pntrlog2bndlem6  27544  pntpbnd1a  27546  constrrtll  33711  constrrtlc1  33712  constrimcl  33750  cos9thpiminplylem1  33762  cos9thpiminplylem2  33763  hgt750lemd  34626  bcprod  35701  dnizphlfeqhlf  36440  sumcubes  42309  flt4lem5elem  42621  jm3.1lem1  42988  sqrtcval  43612  fzisoeu  45277  supxrgelem  45312  sigarcol  46841  dignn0flhalflem1  48543  1subrec1sub  48633  i2linesd  49591
  Copyright terms: Public domain W3C validator