![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mvrladdd | Structured version Visualization version GIF version |
Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
Ref | Expression |
---|---|
mvrraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mvrraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
mvrraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
Ref | Expression |
---|---|
mvrladdd | ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrraddd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
2 | mvrraddd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | mvrraddd.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
4 | 2, 1, 3 | comraddd 11504 | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
5 | 1, 2, 4 | mvrraddd 11702 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 − cmin 11520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 |
This theorem is referenced by: 2txmxeqx 12433 cvgcmpce 15866 mertens 15934 sin01bnd 16233 cos01bnd 16234 eirrlem 16252 bitsmod 16482 dveflem 26037 mtest 26465 tangtx 26565 efiarg 26667 quart1lem 26916 efiatan2 26978 log2tlbnd 27006 jensenlem2 27049 fsumharmonic 27073 chtublem 27273 bcctr 27337 pcbcctr 27338 bcp1ctr 27341 bposlem9 27354 lgsquadlem1 27442 selberg2lem 27612 logdivbnd 27618 pntrsumo1 27627 pntrsumbnd2 27629 pntrlog2bndlem6 27645 pntpbnd1a 27647 constrrtll 33722 constrrtlc1 33723 hgt750lemd 34625 bcprod 35700 dnizphlfeqhlf 36442 sumcubes 42301 flt4lem5elem 42606 jm3.1lem1 42974 sqrtcval 43603 fzisoeu 45215 supxrgelem 45252 sigarcol 46785 dignn0flhalflem1 48349 1subrec1sub 48439 i2linesd 48873 |
Copyright terms: Public domain | W3C validator |