| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mvrladdd | Structured version Visualization version GIF version | ||
| Description: Move the left term in a sum on the RHS to the LHS, deduction form. (Contributed by David A. Wheeler, 11-Oct-2018.) |
| Ref | Expression |
|---|---|
| mvrraddd.1 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| mvrraddd.2 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| mvrraddd.3 | ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) |
| Ref | Expression |
|---|---|
| mvrladdd | ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrraddd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 2 | mvrraddd.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | mvrraddd.3 | . . 3 ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) | |
| 4 | 2, 1, 3 | comraddd 11447 | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| 5 | 1, 2, 4 | mvrraddd 11647 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 + caddc 11130 − cmin 11464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-sub 11466 |
| This theorem is referenced by: 2txmxeqx 12378 cvgcmpce 15832 mertens 15900 sin01bnd 16201 cos01bnd 16202 eirrlem 16220 bitsmod 16453 dveflem 25933 mtest 26363 tangtx 26464 efiarg 26566 quart1lem 26815 efiatan2 26877 log2tlbnd 26905 jensenlem2 26948 fsumharmonic 26972 chtublem 27172 bcctr 27236 pcbcctr 27237 bcp1ctr 27240 bposlem9 27253 lgsquadlem1 27341 selberg2lem 27511 logdivbnd 27517 pntrsumo1 27526 pntrsumbnd2 27528 pntrlog2bndlem6 27544 pntpbnd1a 27546 constrrtll 33711 constrrtlc1 33712 constrimcl 33750 cos9thpiminplylem1 33762 cos9thpiminplylem2 33763 hgt750lemd 34626 bcprod 35701 dnizphlfeqhlf 36440 sumcubes 42309 flt4lem5elem 42621 jm3.1lem1 42988 sqrtcval 43612 fzisoeu 45277 supxrgelem 45312 sigarcol 46841 dignn0flhalflem1 48543 1subrec1sub 48633 i2linesd 49591 |
| Copyright terms: Public domain | W3C validator |