| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7438 |
. . . . . 6
⊢ (𝑦 = 𝑁 → (𝑦 · 𝑥) = (𝑁 · 𝑥)) |
| 2 | 1 | eqeq1d 2739 |
. . . . 5
⊢ (𝑦 = 𝑁 → ((𝑦 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 )) |
| 3 | 2 | ralbidv 3178 |
. . . 4
⊢ (𝑦 = 𝑁 → (∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
| 4 | 3 | elrab 3692 |
. . 3
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝑁 ∈ ℕ ∧
∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) |
| 5 | | gexcl.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
| 6 | | gexid.3 |
. . . . . 6
⊢ · =
(.g‘𝐺) |
| 7 | | gexid.4 |
. . . . . 6
⊢ 0 =
(0g‘𝐺) |
| 8 | | gexcl.2 |
. . . . . 6
⊢ 𝐸 = (gEx‘𝐺) |
| 9 | | eqid 2737 |
. . . . . 6
⊢ {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } |
| 10 | 5, 6, 7, 8, 9 | gexval 19596 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 𝐸 = if({𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, <
))) |
| 11 | | ne0i 4341 |
. . . . . 6
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ≠
∅) |
| 12 | | ifnefalse 4537 |
. . . . . 6
⊢ ({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅ →
if({𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) =
inf({𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 }, ℝ, <
)) |
| 13 | 11, 12 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → if({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) =
inf({𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 }, ℝ, <
)) |
| 14 | 10, 13 | sylan9eq 2797 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 = inf({𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, <
)) |
| 15 | | ssrab2 4080 |
. . . . . 6
⊢ {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆
ℕ |
| 16 | | nnuz 12921 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 17 | 15, 16 | sseqtri 4032 |
. . . . . . 7
⊢ {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆
(ℤ≥‘1) |
| 18 | 11 | adantl 481 |
. . . . . . 7
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → {𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ≠
∅) |
| 19 | | infssuzcl 12974 |
. . . . . . 7
⊢ (({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆
(ℤ≥‘1) ∧ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅) →
inf({𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
{𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) |
| 20 | 17, 18, 19 | sylancr 587 |
. . . . . 6
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
{𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) |
| 21 | 15, 20 | sselid 3981 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
ℕ) |
| 22 | | infssuzle 12973 |
. . . . . . 7
⊢ (({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } ⊆
(ℤ≥‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤
𝑁) |
| 23 | 17, 22 | mpan 690 |
. . . . . 6
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤
𝑁) |
| 24 | 23 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤
𝑁) |
| 25 | | elrabi 3687 |
. . . . . . . 8
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℕ) |
| 26 | 25 | nnzd 12640 |
. . . . . . 7
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℤ) |
| 27 | | fznn 13632 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(inf({𝑦 ∈ ℕ
∣ ∀𝑥 ∈
𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
(1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
ℕ ∧ inf({𝑦 ∈
ℕ ∣ ∀𝑥
∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤
𝑁))) |
| 28 | 26, 27 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 } → (inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
(1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
ℕ ∧ inf({𝑦 ∈
ℕ ∣ ∀𝑥
∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤
𝑁))) |
| 29 | 28 | adantl 481 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → (inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
(1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
ℕ ∧ inf({𝑦 ∈
ℕ ∣ ∀𝑥
∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤
𝑁))) |
| 30 | 21, 24, 29 | mpbir2and 713 |
. . . 4
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣
∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈
(1...𝑁)) |
| 31 | 14, 30 | eqeltrd 2841 |
. . 3
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥 ∈ 𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 ∈ (1...𝑁)) |
| 32 | 4, 31 | sylan2br 595 |
. 2
⊢ ((𝐺 ∈ 𝑉 ∧ (𝑁 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ (1...𝑁)) |
| 33 | 32 | 3impb 1115 |
1
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ ∀𝑥 ∈ 𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁)) |