MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem2 Structured version   Visualization version   GIF version

Theorem gexlem2 18685
Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexlem2 ((𝐺𝑉𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7137 . . . . . 6 (𝑦 = 𝑁 → (𝑦 · 𝑥) = (𝑁 · 𝑥))
21eqeq1d 2823 . . . . 5 (𝑦 = 𝑁 → ((𝑦 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
32ralbidv 3185 . . . 4 (𝑦 = 𝑁 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
43elrab 3657 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
6 gexid.3 . . . . . 6 · = (.g𝐺)
7 gexid.4 . . . . . 6 0 = (0g𝐺)
8 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
9 eqid 2821 . . . . . 6 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
105, 6, 7, 8, 9gexval 18681 . . . . 5 (𝐺𝑉𝐸 = if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )))
11 ne0i 4273 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅)
12 ifnefalse 4452 . . . . . 6 ({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅ → if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
1311, 12syl 17 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
1410, 13sylan9eq 2876 . . . 4 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
15 ssrab2 4032 . . . . . 6 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ
16 nnuz 12259 . . . . . . . 8 ℕ = (ℤ‘1)
1715, 16sseqtri 3979 . . . . . . 7 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
1811adantl 485 . . . . . . 7 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅)
19 infssuzcl 12310 . . . . . . 7 (({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
2017, 18, 19sylancr 590 . . . . . 6 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
2115, 20sseldi 3941 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
22 infssuzle 12309 . . . . . . 7 (({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
2317, 22mpan 689 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
2423adantl 485 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
25 elrabi 3652 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℕ)
2625nnzd 12064 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℤ)
27 fznn 12958 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
2826, 27syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
2928adantl 485 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
3021, 24, 29mpbir2and 712 . . . 4 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁))
3114, 30eqeltrd 2912 . . 3 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 ∈ (1...𝑁))
324, 31sylan2br 597 . 2 ((𝐺𝑉 ∧ (𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ (1...𝑁))
33323impb 1112 1 ((𝐺𝑉𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  {crab 3130  wss 3910  c0 4266  ifcif 4440   class class class wbr 5039  cfv 6328  (class class class)co 7130  infcinf 8881  cr 10513  0cc0 10514  1c1 10515   < clt 10652  cle 10653  cn 11615  cz 11959  cuz 12221  ...cfz 12875  Basecbs 16461  0gc0g 16691  .gcmg 18202  gExcgex 18631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-gex 18635
This theorem is referenced by:  gexdvds  18687  gexcl3  18690  gex1  18694
  Copyright terms: Public domain W3C validator