MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexlem2 Structured version   Visualization version   GIF version

Theorem gexlem2 19187
Description: Any positive annihilator of all the group elements is an upper bound on the group exponent. (Contributed by Mario Carneiro, 24-Apr-2016.) (Proof shortened by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
gexcl.1 𝑋 = (Base‘𝐺)
gexcl.2 𝐸 = (gEx‘𝐺)
gexid.3 · = (.g𝐺)
gexid.4 0 = (0g𝐺)
Assertion
Ref Expression
gexlem2 ((𝐺𝑉𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑋   𝑥, 0   𝑥, ·

Proof of Theorem gexlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . 6 (𝑦 = 𝑁 → (𝑦 · 𝑥) = (𝑁 · 𝑥))
21eqeq1d 2740 . . . . 5 (𝑦 = 𝑁 → ((𝑦 · 𝑥) = 0 ↔ (𝑁 · 𝑥) = 0 ))
32ralbidv 3112 . . . 4 (𝑦 = 𝑁 → (∀𝑥𝑋 (𝑦 · 𝑥) = 0 ↔ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
43elrab 3624 . . 3 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ↔ (𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ))
5 gexcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
6 gexid.3 . . . . . 6 · = (.g𝐺)
7 gexid.4 . . . . . 6 0 = (0g𝐺)
8 gexcl.2 . . . . . 6 𝐸 = (gEx‘𝐺)
9 eqid 2738 . . . . . 6 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }
105, 6, 7, 8, 9gexval 19183 . . . . 5 (𝐺𝑉𝐸 = if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )))
11 ne0i 4268 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅)
12 ifnefalse 4471 . . . . . 6 ({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅ → if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
1311, 12syl 17 . . . . 5 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → if({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } = ∅, 0, inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < )) = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
1410, 13sylan9eq 2798 . . . 4 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 = inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ))
15 ssrab2 4013 . . . . . 6 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ ℕ
16 nnuz 12621 . . . . . . . 8 ℕ = (ℤ‘1)
1715, 16sseqtri 3957 . . . . . . 7 {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1)
1811adantl 482 . . . . . . 7 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅)
19 infssuzcl 12672 . . . . . . 7 (({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ≠ ∅) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
2017, 18, 19sylancr 587 . . . . . 6 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 })
2115, 20sselid 3919 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ)
22 infssuzle 12671 . . . . . . 7 (({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } ⊆ (ℤ‘1) ∧ 𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
2317, 22mpan 687 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
2423adantl 482 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)
25 elrabi 3618 . . . . . . . 8 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℕ)
2625nnzd 12425 . . . . . . 7 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → 𝑁 ∈ ℤ)
27 fznn 13324 . . . . . . 7 (𝑁 ∈ ℤ → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
2826, 27syl 17 . . . . . 6 (𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 } → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
2928adantl 482 . . . . 5 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁) ↔ (inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ ℕ ∧ inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ≤ 𝑁)))
3021, 24, 29mpbir2and 710 . . . 4 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → inf({𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }, ℝ, < ) ∈ (1...𝑁))
3114, 30eqeltrd 2839 . . 3 ((𝐺𝑉𝑁 ∈ {𝑦 ∈ ℕ ∣ ∀𝑥𝑋 (𝑦 · 𝑥) = 0 }) → 𝐸 ∈ (1...𝑁))
324, 31sylan2br 595 . 2 ((𝐺𝑉 ∧ (𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 )) → 𝐸 ∈ (1...𝑁))
33323impb 1114 1 ((𝐺𝑉𝑁 ∈ ℕ ∧ ∀𝑥𝑋 (𝑁 · 𝑥) = 0 ) → 𝐸 ∈ (1...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  wss 3887  c0 4256  ifcif 4459   class class class wbr 5074  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   < clt 11009  cle 11010  cn 11973  cz 12319  cuz 12582  ...cfz 13239  Basecbs 16912  0gc0g 17150  .gcmg 18700  gExcgex 19133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-gex 19137
This theorem is referenced by:  gexdvds  19189  gexcl3  19192  gex1  19196
  Copyright terms: Public domain W3C validator