![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrvmasumlem | Structured version Visualization version GIF version |
Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
Ref | Expression |
---|---|
dchrvmasumlem | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
2 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
3 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | dchrmusum.g | . . . . . . . 8 ⊢ 𝐺 = (DChr‘𝑁) | |
5 | dchrmusum.d | . . . . . . . 8 ⊢ 𝐷 = (Base‘𝐺) | |
6 | dchrmusum.1 | . . . . . . . 8 ⊢ 1 = (0g‘𝐺) | |
7 | dchrmusum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | dchrmusum.n1 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
9 | dchrmusum.f | . . . . . . . 8 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
10 | dchrmusum.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
11 | dchrmusum.t | . . . . . . . 8 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
12 | dchrmusum.2 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dchrisumn0 27467 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) |
14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ≠ 0) |
15 | ifnefalse 4541 | . . . . . 6 ⊢ (𝑇 ≠ 0 → if(𝑇 = 0, (log‘𝑥), 0) = 0) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑇 = 0, (log‘𝑥), 0) = 0) |
17 | 16 | oveq2d 7436 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0)) |
18 | fzfid 13971 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) | |
19 | 7 | ad2antrr 725 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋 ∈ 𝐷) |
20 | elfzelz 13534 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ) | |
21 | 20 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
22 | 4, 1, 5, 2, 19, 21 | dchrzrhcl 27191 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
23 | elfznn 13563 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
24 | 23 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
25 | vmacl 27063 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ) | |
26 | nndivre 12284 | . . . . . . . . . 10 ⊢ (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) | |
27 | 25, 26 | mpancom 687 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
28 | 24, 27 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
29 | 28 | recnd 11273 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ) |
30 | 22, 29 | mulcld 11265 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
31 | 18, 30 | fsumcl 15712 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
32 | 31 | addridd 11445 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
33 | 17, 32 | eqtrd 2768 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
34 | 33 | mpteq2dva 5248 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)))) |
35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dchrvmasumif 27449 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) |
36 | 34, 35 | eqeltrrd 2830 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ifcif 4529 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6548 (class class class)co 7420 ℝcr 11138 0cc0 11139 1c1 11140 + caddc 11142 · cmul 11144 +∞cpnf 11276 ≤ cle 11280 − cmin 11475 / cdiv 11902 ℕcn 12243 ℤcz 12589 ℝ+crp 13007 [,)cico 13359 ...cfz 13517 ⌊cfl 13788 seqcseq 13999 abscabs 15214 ⇝ cli 15461 𝑂(1)co1 15463 Σcsu 15665 Basecbs 17180 0gc0g 17421 ℤRHomczrh 21425 ℤ/nℤczn 21428 logclog 26501 Λcvma 27037 DChrcdchr 27178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-rpss 7728 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-ec 8727 df-qs 8731 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-dju 9925 df-card 9963 df-acn 9966 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-xnn0 12576 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ioc 13362 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-mod 13868 df-seq 14000 df-exp 14060 df-fac 14266 df-bc 14295 df-hash 14323 df-word 14498 df-concat 14554 df-s1 14579 df-shft 15047 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-limsup 15448 df-clim 15465 df-rlim 15466 df-o1 15467 df-lo1 15468 df-sum 15666 df-ef 16044 df-e 16045 df-sin 16046 df-cos 16047 df-tan 16048 df-pi 16049 df-dvds 16232 df-gcd 16470 df-prm 16643 df-numer 16707 df-denom 16708 df-phi 16735 df-pc 16806 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-qus 17491 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mulg 19024 df-subg 19078 df-nsg 19079 df-eqg 19080 df-ghm 19168 df-gim 19213 df-ga 19241 df-cntz 19268 df-oppg 19297 df-od 19483 df-gex 19484 df-pgp 19485 df-lsm 19591 df-pj1 19592 df-cmn 19737 df-abl 19738 df-cyg 19833 df-dprd 19952 df-dpj 19953 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-cring 20176 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-dvr 20340 df-rhm 20411 df-subrng 20483 df-subrg 20508 df-drng 20626 df-lmod 20745 df-lss 20816 df-lsp 20856 df-sra 21058 df-rgmod 21059 df-lidl 21104 df-rsp 21105 df-2idl 21144 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-zring 21373 df-zrh 21429 df-zn 21432 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-lp 23053 df-perf 23054 df-cn 23144 df-cnp 23145 df-haus 23232 df-cmp 23304 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cncf 24811 df-0p 25612 df-limc 25808 df-dv 25809 df-ply 26135 df-idp 26136 df-coe 26137 df-dgr 26138 df-quot 26239 df-ulm 26326 df-log 26503 df-cxp 26504 df-atan 26812 df-em 26938 df-cht 27042 df-vma 27043 df-chp 27044 df-ppi 27045 df-mu 27046 df-dchr 27179 |
This theorem is referenced by: dchrvmasum 27471 |
Copyright terms: Public domain | W3C validator |