MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem Structured version   Visualization version   GIF version

Theorem dchrvmasumlem 27430
Description: The sum of the MΓΆbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (β„€/nβ„€β€˜π‘)
rpvmasum.l 𝐿 = (β„€RHomβ€˜π‘)
rpvmasum.a (πœ‘ β†’ 𝑁 ∈ β„•)
dchrmusum.g 𝐺 = (DChrβ€˜π‘)
dchrmusum.d 𝐷 = (Baseβ€˜πΊ)
dchrmusum.1 1 = (0gβ€˜πΊ)
dchrmusum.b (πœ‘ β†’ 𝑋 ∈ 𝐷)
dchrmusum.n1 (πœ‘ β†’ 𝑋 β‰  1 )
dchrmusum.f 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
dchrmusum.c (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
dchrmusum.t (πœ‘ β†’ seq1( + , 𝐹) ⇝ 𝑇)
dchrmusum.2 (πœ‘ β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑇)) ≀ (𝐢 / 𝑦))
Assertion
Ref Expression
dchrvmasumlem (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛))) ∈ 𝑂(1))
Distinct variable groups:   π‘₯,𝑛,𝑦, 1   𝐢,𝑛,π‘₯,𝑦   𝑛,𝐹,π‘₯,𝑦   π‘₯,π‘Ž,𝑦   𝑛,𝑁,π‘₯,𝑦   πœ‘,𝑛,π‘₯   𝑇,𝑛,π‘₯,𝑦   𝑛,𝑍,π‘₯,𝑦   𝐷,𝑛,π‘₯,𝑦   𝑛,π‘Ž,𝐿,π‘₯,𝑦   𝑋,π‘Ž,𝑛,π‘₯,𝑦
Allowed substitution hints:   πœ‘(𝑦,π‘Ž)   𝐢(π‘Ž)   𝐷(π‘Ž)   𝑇(π‘Ž)   1 (π‘Ž)   𝐹(π‘Ž)   𝐺(π‘₯,𝑦,𝑛,π‘Ž)   𝑁(π‘Ž)   𝑍(π‘Ž)

Proof of Theorem dchrvmasumlem
StepHypRef Expression
1 rpvmasum.z . . . . . . . 8 𝑍 = (β„€/nβ„€β€˜π‘)
2 rpvmasum.l . . . . . . . 8 𝐿 = (β„€RHomβ€˜π‘)
3 rpvmasum.a . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ β„•)
4 dchrmusum.g . . . . . . . 8 𝐺 = (DChrβ€˜π‘)
5 dchrmusum.d . . . . . . . 8 𝐷 = (Baseβ€˜πΊ)
6 dchrmusum.1 . . . . . . . 8 1 = (0gβ€˜πΊ)
7 dchrmusum.b . . . . . . . 8 (πœ‘ β†’ 𝑋 ∈ 𝐷)
8 dchrmusum.n1 . . . . . . . 8 (πœ‘ β†’ 𝑋 β‰  1 )
9 dchrmusum.f . . . . . . . 8 𝐹 = (π‘Ž ∈ β„• ↦ ((π‘‹β€˜(πΏβ€˜π‘Ž)) / π‘Ž))
10 dchrmusum.c . . . . . . . 8 (πœ‘ β†’ 𝐢 ∈ (0[,)+∞))
11 dchrmusum.t . . . . . . . 8 (πœ‘ β†’ seq1( + , 𝐹) ⇝ 𝑇)
12 dchrmusum.2 . . . . . . . 8 (πœ‘ β†’ βˆ€π‘¦ ∈ (1[,)+∞)(absβ€˜((seq1( + , 𝐹)β€˜(βŒŠβ€˜π‘¦)) βˆ’ 𝑇)) ≀ (𝐢 / 𝑦))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dchrisumn0 27428 . . . . . . 7 (πœ‘ β†’ 𝑇 β‰  0)
1413adantr 480 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ 𝑇 β‰  0)
15 ifnefalse 4536 . . . . . 6 (𝑇 β‰  0 β†’ if(𝑇 = 0, (logβ€˜π‘₯), 0) = 0)
1614, 15syl 17 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ if(𝑇 = 0, (logβ€˜π‘₯), 0) = 0)
1716oveq2d 7430 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑇 = 0, (logβ€˜π‘₯), 0)) = (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + 0))
18 fzfid 13956 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (1...(βŒŠβ€˜π‘₯)) ∈ Fin)
197ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑋 ∈ 𝐷)
20 elfzelz 13519 . . . . . . . . 9 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ β„€)
2120adantl 481 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„€)
224, 1, 5, 2, 19, 21dchrzrhcl 27152 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ (π‘‹β€˜(πΏβ€˜π‘›)) ∈ β„‚)
23 elfznn 13548 . . . . . . . . . 10 (𝑛 ∈ (1...(βŒŠβ€˜π‘₯)) β†’ 𝑛 ∈ β„•)
2423adantl 481 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ 𝑛 ∈ β„•)
25 vmacl 27024 . . . . . . . . . 10 (𝑛 ∈ β„• β†’ (Ξ›β€˜π‘›) ∈ ℝ)
26 nndivre 12269 . . . . . . . . . 10 (((Ξ›β€˜π‘›) ∈ ℝ ∧ 𝑛 ∈ β„•) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
2725, 26mpancom 687 . . . . . . . . 9 (𝑛 ∈ β„• β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
2824, 27syl 17 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ ℝ)
2928recnd 11258 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((Ξ›β€˜π‘›) / 𝑛) ∈ β„‚)
3022, 29mulcld 11250 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ ℝ+) ∧ 𝑛 ∈ (1...(βŒŠβ€˜π‘₯))) β†’ ((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) ∈ β„‚)
3118, 30fsumcl 15697 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) ∈ β„‚)
3231addridd 11430 . . . 4 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)))
3317, 32eqtrd 2767 . . 3 ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑇 = 0, (logβ€˜π‘₯), 0)) = Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)))
3433mpteq2dva 5242 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑇 = 0, (logβ€˜π‘₯), 0))) = (π‘₯ ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛))))
351, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dchrvmasumif 27410 . 2 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛)) + if(𝑇 = 0, (logβ€˜π‘₯), 0))) ∈ 𝑂(1))
3634, 35eqeltrrd 2829 1 (πœ‘ β†’ (π‘₯ ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(βŒŠβ€˜π‘₯))((π‘‹β€˜(πΏβ€˜π‘›)) Β· ((Ξ›β€˜π‘›) / 𝑛))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   β‰  wne 2935  βˆ€wral 3056  ifcif 4524   class class class wbr 5142   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414  β„cr 11123  0cc0 11124  1c1 11125   + caddc 11127   Β· cmul 11129  +∞cpnf 11261   ≀ cle 11265   βˆ’ cmin 11460   / cdiv 11887  β„•cn 12228  β„€cz 12574  β„+crp 12992  [,)cico 13344  ...cfz 13502  βŒŠcfl 13773  seqcseq 13984  abscabs 15199   ⇝ cli 15446  π‘‚(1)co1 15448  Ξ£csu 15650  Basecbs 17165  0gc0g 17406  β„€RHomczrh 21405  β„€/nβ„€czn 21408  logclog 26462  Ξ›cvma 26998  DChrcdchr 27139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203  ax-mulf 11204
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7677  df-rpss 7720  df-om 7863  df-1st 7985  df-2nd 7986  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-er 8716  df-ec 8718  df-qs 8722  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9376  df-fi 9420  df-sup 9451  df-inf 9452  df-oi 9519  df-dju 9910  df-card 9948  df-acn 9951  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-5 12294  df-6 12295  df-7 12296  df-8 12297  df-9 12298  df-n0 12489  df-xnn0 12561  df-z 12575  df-dec 12694  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ioo 13346  df-ioc 13347  df-ico 13348  df-icc 13349  df-fz 13503  df-fzo 13646  df-fl 13775  df-mod 13853  df-seq 13985  df-exp 14045  df-fac 14251  df-bc 14280  df-hash 14308  df-word 14483  df-concat 14539  df-s1 14564  df-shft 15032  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-limsup 15433  df-clim 15450  df-rlim 15451  df-o1 15452  df-lo1 15453  df-sum 15651  df-ef 16029  df-e 16030  df-sin 16031  df-cos 16032  df-tan 16033  df-pi 16034  df-dvds 16217  df-gcd 16455  df-prm 16628  df-numer 16692  df-denom 16693  df-phi 16720  df-pc 16791  df-struct 17101  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulr 17232  df-starv 17233  df-sca 17234  df-vsca 17235  df-ip 17236  df-tset 17237  df-ple 17238  df-ds 17240  df-unif 17241  df-hom 17242  df-cco 17243  df-rest 17389  df-topn 17390  df-0g 17408  df-gsum 17409  df-topgen 17410  df-pt 17411  df-prds 17414  df-xrs 17469  df-qtop 17474  df-imas 17475  df-qus 17476  df-xps 17477  df-mre 17551  df-mrc 17552  df-acs 17554  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-mhm 18725  df-submnd 18726  df-grp 18878  df-minusg 18879  df-sbg 18880  df-mulg 19008  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19197  df-ga 19225  df-cntz 19252  df-oppg 19281  df-od 19467  df-gex 19468  df-pgp 19469  df-lsm 19575  df-pj1 19576  df-cmn 19721  df-abl 19722  df-cyg 19817  df-dprd 19936  df-dpj 19937  df-mgp 20059  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20255  df-dvdsr 20278  df-unit 20279  df-invr 20309  df-dvr 20322  df-rhm 20393  df-subrng 20465  df-subrg 20490  df-drng 20608  df-lmod 20727  df-lss 20798  df-lsp 20838  df-sra 21040  df-rgmod 21041  df-lidl 21086  df-rsp 21087  df-2idl 21126  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-cnfld 21260  df-zring 21353  df-zrh 21409  df-zn 21412  df-top 22770  df-topon 22787  df-topsp 22809  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-lp 23014  df-perf 23015  df-cn 23105  df-cnp 23106  df-haus 23193  df-cmp 23265  df-tx 23440  df-hmeo 23633  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-xms 24200  df-ms 24201  df-tms 24202  df-cncf 24772  df-0p 25573  df-limc 25769  df-dv 25770  df-ply 26096  df-idp 26097  df-coe 26098  df-dgr 26099  df-quot 26200  df-ulm 26287  df-log 26464  df-cxp 26465  df-atan 26773  df-em 26899  df-cht 27003  df-vma 27004  df-chp 27005  df-ppi 27006  df-mu 27007  df-dchr 27140
This theorem is referenced by:  dchrvmasum  27432
  Copyright terms: Public domain W3C validator