| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dchrvmasumlem | Structured version Visualization version GIF version | ||
| Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by 𝑛, is bounded. Equation 9.4.16 of [Shapiro], p. 379. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| rpvmasum.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
| rpvmasum.l | ⊢ 𝐿 = (ℤRHom‘𝑍) |
| rpvmasum.a | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| dchrmusum.g | ⊢ 𝐺 = (DChr‘𝑁) |
| dchrmusum.d | ⊢ 𝐷 = (Base‘𝐺) |
| dchrmusum.1 | ⊢ 1 = (0g‘𝐺) |
| dchrmusum.b | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
| dchrmusum.n1 | ⊢ (𝜑 → 𝑋 ≠ 1 ) |
| dchrmusum.f | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) |
| dchrmusum.c | ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| dchrmusum.t | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) |
| dchrmusum.2 | ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) |
| Ref | Expression |
|---|---|
| dchrvmasumlem | ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpvmasum.z | . . . . . . . 8 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
| 2 | rpvmasum.l | . . . . . . . 8 ⊢ 𝐿 = (ℤRHom‘𝑍) | |
| 3 | rpvmasum.a | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | dchrmusum.g | . . . . . . . 8 ⊢ 𝐺 = (DChr‘𝑁) | |
| 5 | dchrmusum.d | . . . . . . . 8 ⊢ 𝐷 = (Base‘𝐺) | |
| 6 | dchrmusum.1 | . . . . . . . 8 ⊢ 1 = (0g‘𝐺) | |
| 7 | dchrmusum.b | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
| 8 | dchrmusum.n1 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ≠ 1 ) | |
| 9 | dchrmusum.f | . . . . . . . 8 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ ((𝑋‘(𝐿‘𝑎)) / 𝑎)) | |
| 10 | dchrmusum.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) | |
| 11 | dchrmusum.t | . . . . . . . 8 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝑇) | |
| 12 | dchrmusum.2 | . . . . . . . 8 ⊢ (𝜑 → ∀𝑦 ∈ (1[,)+∞)(abs‘((seq1( + , 𝐹)‘(⌊‘𝑦)) − 𝑇)) ≤ (𝐶 / 𝑦)) | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dchrisumn0 27465 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑇 ≠ 0) |
| 15 | ifnefalse 4486 | . . . . . 6 ⊢ (𝑇 ≠ 0 → if(𝑇 = 0, (log‘𝑥), 0) = 0) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → if(𝑇 = 0, (log‘𝑥), 0) = 0) |
| 17 | 16 | oveq2d 7368 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0)) |
| 18 | fzfid 13886 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) | |
| 19 | 7 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑋 ∈ 𝐷) |
| 20 | elfzelz 13430 | . . . . . . . . 9 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℤ) | |
| 21 | 20 | adantl 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℤ) |
| 22 | 4, 1, 5, 2, 19, 21 | dchrzrhcl 27189 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑋‘(𝐿‘𝑛)) ∈ ℂ) |
| 23 | elfznn 13459 | . . . . . . . . . 10 ⊢ (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ) | |
| 24 | 23 | adantl 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
| 25 | vmacl 27061 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ → (Λ‘𝑛) ∈ ℝ) | |
| 26 | nndivre 12172 | . . . . . . . . . 10 ⊢ (((Λ‘𝑛) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) | |
| 27 | 25, 26 | mpancom 688 | . . . . . . . . 9 ⊢ (𝑛 ∈ ℕ → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
| 28 | 24, 27 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℝ) |
| 29 | 28 | recnd 11146 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Λ‘𝑛) / 𝑛) ∈ ℂ) |
| 30 | 22, 29 | mulcld 11138 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
| 31 | 18, 30 | fsumcl 15646 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) ∈ ℂ) |
| 32 | 31 | addridd 11319 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + 0) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
| 33 | 17, 32 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0)) = Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) |
| 34 | 33 | mpteq2dva 5186 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)))) |
| 35 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | dchrvmasumif 27447 | . 2 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛)) + if(𝑇 = 0, (log‘𝑥), 0))) ∈ 𝑂(1)) |
| 36 | 34, 35 | eqeltrrd 2832 | 1 ⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑋‘(𝐿‘𝑛)) · ((Λ‘𝑛) / 𝑛))) ∈ 𝑂(1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ifcif 4474 class class class wbr 5093 ↦ cmpt 5174 ‘cfv 6487 (class class class)co 7352 ℝcr 11011 0cc0 11012 1c1 11013 + caddc 11015 · cmul 11017 +∞cpnf 11149 ≤ cle 11153 − cmin 11350 / cdiv 11780 ℕcn 12131 ℤcz 12474 ℝ+crp 12896 [,)cico 13253 ...cfz 13413 ⌊cfl 13700 seqcseq 13914 abscabs 15147 ⇝ cli 15397 𝑂(1)co1 15399 Σcsu 15599 Basecbs 17126 0gc0g 17349 ℤRHomczrh 21442 ℤ/nℤczn 21445 logclog 26496 Λcvma 27035 DChrcdchr 27176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-rpss 7662 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-ec 8630 df-qs 8634 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9800 df-card 9838 df-acn 9841 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-xnn0 12461 df-z 12475 df-dec 12595 df-uz 12739 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ioo 13255 df-ioc 13256 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-fl 13702 df-mod 13780 df-seq 13915 df-exp 13975 df-fac 14187 df-bc 14216 df-hash 14244 df-word 14427 df-concat 14484 df-s1 14510 df-shft 14980 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-limsup 15384 df-clim 15401 df-rlim 15402 df-o1 15403 df-lo1 15404 df-sum 15600 df-ef 15980 df-e 15981 df-sin 15982 df-cos 15983 df-tan 15984 df-pi 15985 df-dvds 16170 df-gcd 16412 df-prm 16589 df-numer 16652 df-denom 16653 df-phi 16683 df-pc 16755 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-hom 17191 df-cco 17192 df-rest 17332 df-topn 17333 df-0g 17351 df-gsum 17352 df-topgen 17353 df-pt 17354 df-prds 17357 df-xrs 17412 df-qtop 17417 df-imas 17418 df-qus 17419 df-xps 17420 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-nsg 19043 df-eqg 19044 df-ghm 19131 df-gim 19177 df-ga 19208 df-cntz 19235 df-oppg 19264 df-od 19446 df-gex 19447 df-pgp 19448 df-lsm 19554 df-pj1 19555 df-cmn 19700 df-abl 19701 df-cyg 19796 df-dprd 19915 df-dpj 19916 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-dvr 20325 df-rhm 20396 df-subrng 20467 df-subrg 20491 df-drng 20652 df-lmod 20801 df-lss 20871 df-lsp 20911 df-sra 21113 df-rgmod 21114 df-lidl 21151 df-rsp 21152 df-2idl 21193 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-zring 21390 df-zrh 21446 df-zn 21449 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-cmp 23308 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24241 df-ms 24242 df-tms 24243 df-cncf 24804 df-0p 25604 df-limc 25800 df-dv 25801 df-ply 26126 df-idp 26127 df-coe 26128 df-dgr 26129 df-quot 26232 df-ulm 26319 df-log 26498 df-cxp 26499 df-atan 26810 df-em 26936 df-cht 27040 df-vma 27041 df-chp 27042 df-ppi 27043 df-mu 27044 df-dchr 27177 |
| This theorem is referenced by: dchrvmasum 27469 |
| Copyright terms: Public domain | W3C validator |