Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dpjrid | Structured version Visualization version GIF version |
Description: The 𝑌-th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dpjlid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) |
dpjrid.0 | ⊢ 0 = (0g‘𝐺) |
dpjrid.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
dpjrid.6 | ⊢ (𝜑 → 𝑌 ≠ 𝑋) |
Ref | Expression |
---|---|
dpjrid | ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6811 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑃‘𝑥) = (𝑃‘𝑌)) | |
2 | 1 | fveq1d 6813 | . . . 4 ⊢ (𝑥 = 𝑌 → ((𝑃‘𝑥)‘𝐴) = ((𝑃‘𝑌)‘𝐴)) |
3 | eqeq1 2741 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 = 𝑋 ↔ 𝑌 = 𝑋)) | |
4 | 3 | ifbid 4494 | . . . 4 ⊢ (𝑥 = 𝑌 → if(𝑥 = 𝑋, 𝐴, 0 ) = if(𝑌 = 𝑋, 𝐴, 0 )) |
5 | 2, 4 | eqeq12d 2753 | . . 3 ⊢ (𝑥 = 𝑌 → (((𝑃‘𝑥)‘𝐴) = if(𝑥 = 𝑋, 𝐴, 0 ) ↔ ((𝑃‘𝑌)‘𝐴) = if(𝑌 = 𝑋, 𝐴, 0 ))) |
6 | dpjrid.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
7 | eqid 2737 | . . . . . . 7 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
8 | dpjfval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
9 | dpjfval.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
10 | dpjlid.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
11 | dpjlid.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) | |
12 | eqid 2737 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
13 | 6, 7, 8, 9, 10, 11, 12 | dprdfid 19688 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))) = 𝐴)) |
14 | 13 | simprd 496 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))) = 𝐴) |
15 | 14 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )))) |
16 | dpjfval.p | . . . . 5 ⊢ 𝑃 = (𝐺dProj𝑆) | |
17 | 8, 9, 10 | dprdub 19696 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
18 | 17, 11 | sseldd 3932 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) |
19 | 13 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
20 | 8, 9, 16, 18, 6, 7, 19 | dpjeq 19730 | . . . 4 ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = if(𝑥 = 𝑋, 𝐴, 0 ))) |
21 | 15, 20 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = if(𝑥 = 𝑋, 𝐴, 0 )) |
22 | dpjrid.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
23 | 5, 21, 22 | rspcdva 3571 | . 2 ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = if(𝑌 = 𝑋, 𝐴, 0 )) |
24 | dpjrid.6 | . . 3 ⊢ (𝜑 → 𝑌 ≠ 𝑋) | |
25 | ifnefalse 4483 | . . 3 ⊢ (𝑌 ≠ 𝑋 → if(𝑌 = 𝑋, 𝐴, 0 ) = 0 ) | |
26 | 24, 25 | syl 17 | . 2 ⊢ (𝜑 → if(𝑌 = 𝑋, 𝐴, 0 ) = 0 ) |
27 | 23, 26 | eqtrd 2777 | 1 ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 {crab 3404 ifcif 4471 class class class wbr 5087 ↦ cmpt 5170 dom cdm 5607 ‘cfv 6465 (class class class)co 7315 Xcixp 8733 finSupp cfsupp 9198 0gc0g 17220 Σg cgsu 17221 DProd cdprd 19664 dProjcdpj 19665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-supp 8025 df-tpos 8089 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-ixp 8734 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-fsupp 9199 df-oi 9339 df-card 9768 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-fzo 13456 df-seq 13795 df-hash 14118 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-ress 17012 df-plusg 17045 df-0g 17222 df-gsum 17223 df-mre 17365 df-mrc 17366 df-acs 17368 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-mhm 18500 df-submnd 18501 df-grp 18649 df-minusg 18650 df-sbg 18651 df-mulg 18770 df-subg 18821 df-ghm 18901 df-gim 18944 df-cntz 18992 df-oppg 19019 df-lsm 19310 df-pj1 19311 df-cmn 19456 df-dprd 19666 df-dpj 19667 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |