![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dpjrid | Structured version Visualization version GIF version |
Description: The 𝑌-th index projection annihilates elements of other factors. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
dpjfval.1 | ⊢ (𝜑 → 𝐺dom DProd 𝑆) |
dpjfval.2 | ⊢ (𝜑 → dom 𝑆 = 𝐼) |
dpjfval.p | ⊢ 𝑃 = (𝐺dProj𝑆) |
dpjlid.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
dpjlid.4 | ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) |
dpjrid.0 | ⊢ 0 = (0g‘𝐺) |
dpjrid.5 | ⊢ (𝜑 → 𝑌 ∈ 𝐼) |
dpjrid.6 | ⊢ (𝜑 → 𝑌 ≠ 𝑋) |
Ref | Expression |
---|---|
dpjrid | ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑃‘𝑥) = (𝑃‘𝑌)) | |
2 | 1 | fveq1d 6894 | . . . 4 ⊢ (𝑥 = 𝑌 → ((𝑃‘𝑥)‘𝐴) = ((𝑃‘𝑌)‘𝐴)) |
3 | eqeq1 2734 | . . . . 5 ⊢ (𝑥 = 𝑌 → (𝑥 = 𝑋 ↔ 𝑌 = 𝑋)) | |
4 | 3 | ifbid 4552 | . . . 4 ⊢ (𝑥 = 𝑌 → if(𝑥 = 𝑋, 𝐴, 0 ) = if(𝑌 = 𝑋, 𝐴, 0 )) |
5 | 2, 4 | eqeq12d 2746 | . . 3 ⊢ (𝑥 = 𝑌 → (((𝑃‘𝑥)‘𝐴) = if(𝑥 = 𝑋, 𝐴, 0 ) ↔ ((𝑃‘𝑌)‘𝐴) = if(𝑌 = 𝑋, 𝐴, 0 ))) |
6 | dpjrid.0 | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
7 | eqid 2730 | . . . . . . 7 ⊢ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } = {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } | |
8 | dpjfval.1 | . . . . . . 7 ⊢ (𝜑 → 𝐺dom DProd 𝑆) | |
9 | dpjfval.2 | . . . . . . 7 ⊢ (𝜑 → dom 𝑆 = 𝐼) | |
10 | dpjlid.3 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
11 | dpjlid.4 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (𝑆‘𝑋)) | |
12 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) = (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) | |
13 | 6, 7, 8, 9, 10, 11, 12 | dprdfid 19930 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 } ∧ (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))) = 𝐴)) |
14 | 13 | simprd 494 | . . . . 5 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))) = 𝐴) |
15 | 14 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )))) |
16 | dpjfval.p | . . . . 5 ⊢ 𝑃 = (𝐺dProj𝑆) | |
17 | 8, 9, 10 | dprdub 19938 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑋) ⊆ (𝐺 DProd 𝑆)) |
18 | 17, 11 | sseldd 3984 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐺 DProd 𝑆)) |
19 | 13 | simpld 493 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 )) ∈ {ℎ ∈ X𝑖 ∈ 𝐼 (𝑆‘𝑖) ∣ ℎ finSupp 0 }) |
20 | 8, 9, 16, 18, 6, 7, 19 | dpjeq 19972 | . . . 4 ⊢ (𝜑 → (𝐴 = (𝐺 Σg (𝑥 ∈ 𝐼 ↦ if(𝑥 = 𝑋, 𝐴, 0 ))) ↔ ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = if(𝑥 = 𝑋, 𝐴, 0 ))) |
21 | 15, 20 | mpbid 231 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 ((𝑃‘𝑥)‘𝐴) = if(𝑥 = 𝑋, 𝐴, 0 )) |
22 | dpjrid.5 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐼) | |
23 | 5, 21, 22 | rspcdva 3614 | . 2 ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = if(𝑌 = 𝑋, 𝐴, 0 )) |
24 | dpjrid.6 | . . 3 ⊢ (𝜑 → 𝑌 ≠ 𝑋) | |
25 | ifnefalse 4541 | . . 3 ⊢ (𝑌 ≠ 𝑋 → if(𝑌 = 𝑋, 𝐴, 0 ) = 0 ) | |
26 | 24, 25 | syl 17 | . 2 ⊢ (𝜑 → if(𝑌 = 𝑋, 𝐴, 0 ) = 0 ) |
27 | 23, 26 | eqtrd 2770 | 1 ⊢ (𝜑 → ((𝑃‘𝑌)‘𝐴) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 ∀wral 3059 {crab 3430 ifcif 4529 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5677 ‘cfv 6544 (class class class)co 7413 Xcixp 8895 finSupp cfsupp 9365 0gc0g 17391 Σg cgsu 17392 DProd cdprd 19906 dProjcdpj 19907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-oi 9509 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14297 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-0g 17393 df-gsum 17394 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18707 df-submnd 18708 df-grp 18860 df-minusg 18861 df-sbg 18862 df-mulg 18989 df-subg 19041 df-ghm 19130 df-gim 19175 df-cntz 19224 df-oppg 19253 df-lsm 19547 df-pj1 19548 df-cmn 19693 df-dprd 19908 df-dpj 19909 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |