MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imafiOLD Structured version   Visualization version   GIF version

Theorem imafiOLD 9265
Description: Obsolete version of imafi 9264 as of 25-Jun-2025. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
imafiOLD ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)

Proof of Theorem imafiOLD
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imaeq2 6027 . . . . 5 (𝑥 = ∅ → (𝐹𝑥) = (𝐹 “ ∅))
21eleq1d 2813 . . . 4 (𝑥 = ∅ → ((𝐹𝑥) ∈ Fin ↔ (𝐹 “ ∅) ∈ Fin))
32imbi2d 340 . . 3 (𝑥 = ∅ → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ ∅) ∈ Fin)))
4 imaeq2 6027 . . . . 5 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
54eleq1d 2813 . . . 4 (𝑥 = 𝑦 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑦) ∈ Fin))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹𝑦) ∈ Fin)))
7 imaeq2 6027 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹𝑥) = (𝐹 “ (𝑦 ∪ {𝑧})))
87eleq1d 2813 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹𝑥) ∈ Fin ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
98imbi2d 340 . . 3 (𝑥 = (𝑦 ∪ {𝑧}) → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)))
10 imaeq2 6027 . . . . 5 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1110eleq1d 2813 . . . 4 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ Fin ↔ (𝐹𝑋) ∈ Fin))
1211imbi2d 340 . . 3 (𝑥 = 𝑋 → ((Fun 𝐹 → (𝐹𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹𝑋) ∈ Fin)))
13 ima0 6048 . . . . 5 (𝐹 “ ∅) = ∅
14 0fi 9013 . . . . 5 ∅ ∈ Fin
1513, 14eqeltri 2824 . . . 4 (𝐹 “ ∅) ∈ Fin
1615a1i 11 . . 3 (Fun 𝐹 → (𝐹 “ ∅) ∈ Fin)
17 funfn 6546 . . . . . . . . . 10 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnsnfv 6940 . . . . . . . . . 10 ((𝐹 Fn dom 𝐹𝑧 ∈ dom 𝐹) → {(𝐹𝑧)} = (𝐹 “ {𝑧}))
1917, 18sylanb 581 . . . . . . . . 9 ((Fun 𝐹𝑧 ∈ dom 𝐹) → {(𝐹𝑧)} = (𝐹 “ {𝑧}))
20 snfi 9014 . . . . . . . . 9 {(𝐹𝑧)} ∈ Fin
2119, 20eqeltrrdi 2837 . . . . . . . 8 ((Fun 𝐹𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin)
22 ndmima 6074 . . . . . . . . . 10 𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) = ∅)
2322, 14eqeltrdi 2836 . . . . . . . . 9 𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) ∈ Fin)
2423adantl 481 . . . . . . . 8 ((Fun 𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin)
2521, 24pm2.61dan 812 . . . . . . 7 (Fun 𝐹 → (𝐹 “ {𝑧}) ∈ Fin)
26 imaundi 6122 . . . . . . . 8 (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹𝑦) ∪ (𝐹 “ {𝑧}))
27 unfi 9135 . . . . . . . 8 (((𝐹𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → ((𝐹𝑦) ∪ (𝐹 “ {𝑧})) ∈ Fin)
2826, 27eqeltrid 2832 . . . . . . 7 (((𝐹𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)
2925, 28sylan2 593 . . . . . 6 (((𝐹𝑦) ∈ Fin ∧ Fun 𝐹) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)
3029expcom 413 . . . . 5 (Fun 𝐹 → ((𝐹𝑦) ∈ Fin → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
3130a2i 14 . . . 4 ((Fun 𝐹 → (𝐹𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))
3231a1i 11 . . 3 (𝑦 ∈ Fin → ((Fun 𝐹 → (𝐹𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)))
333, 6, 9, 12, 16, 32findcard2 9128 . 2 (𝑋 ∈ Fin → (Fun 𝐹 → (𝐹𝑋) ∈ Fin))
3433impcom 407 1 ((Fun 𝐹𝑋 ∈ Fin) → (𝐹𝑋) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3912  c0 4296  {csn 4589  dom cdm 5638  cima 5641  Fun wfun 6505   Fn wfn 6506  cfv 6511  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-en 8919  df-fin 8922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator