| Step | Hyp | Ref
| Expression |
| 1 | | imaeq2 6074 |
. . . . 5
⊢ (𝑥 = ∅ → (𝐹 “ 𝑥) = (𝐹 “ ∅)) |
| 2 | 1 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = ∅ → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ ∅) ∈
Fin)) |
| 3 | 2 | imbi2d 340 |
. . 3
⊢ (𝑥 = ∅ → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ ∅) ∈
Fin))) |
| 4 | | imaeq2 6074 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐹 “ 𝑥) = (𝐹 “ 𝑦)) |
| 5 | 4 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ 𝑦) ∈ Fin)) |
| 6 | 5 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ 𝑦) ∈ Fin))) |
| 7 | | imaeq2 6074 |
. . . . 5
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝐹 “ 𝑥) = (𝐹 “ (𝑦 ∪ {𝑧}))) |
| 8 | 7 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)) |
| 9 | 8 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))) |
| 10 | | imaeq2 6074 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝐹 “ 𝑥) = (𝐹 “ 𝑋)) |
| 11 | 10 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = 𝑋 → ((𝐹 “ 𝑥) ∈ Fin ↔ (𝐹 “ 𝑋) ∈ Fin)) |
| 12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑋 → ((Fun 𝐹 → (𝐹 “ 𝑥) ∈ Fin) ↔ (Fun 𝐹 → (𝐹 “ 𝑋) ∈ Fin))) |
| 13 | | ima0 6095 |
. . . . 5
⊢ (𝐹 “ ∅) =
∅ |
| 14 | | 0fi 9082 |
. . . . 5
⊢ ∅
∈ Fin |
| 15 | 13, 14 | eqeltri 2837 |
. . . 4
⊢ (𝐹 “ ∅) ∈
Fin |
| 16 | 15 | a1i 11 |
. . 3
⊢ (Fun
𝐹 → (𝐹 “ ∅) ∈
Fin) |
| 17 | | funfn 6596 |
. . . . . . . . . 10
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
| 18 | | fnsnfv 6988 |
. . . . . . . . . 10
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑧 ∈ dom 𝐹) → {(𝐹‘𝑧)} = (𝐹 “ {𝑧})) |
| 19 | 17, 18 | sylanb 581 |
. . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → {(𝐹‘𝑧)} = (𝐹 “ {𝑧})) |
| 20 | | snfi 9083 |
. . . . . . . . 9
⊢ {(𝐹‘𝑧)} ∈ Fin |
| 21 | 19, 20 | eqeltrrdi 2850 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin) |
| 22 | | ndmima 6121 |
. . . . . . . . . 10
⊢ (¬
𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) = ∅) |
| 23 | 22, 14 | eqeltrdi 2849 |
. . . . . . . . 9
⊢ (¬
𝑧 ∈ dom 𝐹 → (𝐹 “ {𝑧}) ∈ Fin) |
| 24 | 23 | adantl 481 |
. . . . . . . 8
⊢ ((Fun
𝐹 ∧ ¬ 𝑧 ∈ dom 𝐹) → (𝐹 “ {𝑧}) ∈ Fin) |
| 25 | 21, 24 | pm2.61dan 813 |
. . . . . . 7
⊢ (Fun
𝐹 → (𝐹 “ {𝑧}) ∈ Fin) |
| 26 | | imaundi 6169 |
. . . . . . . 8
⊢ (𝐹 “ (𝑦 ∪ {𝑧})) = ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧})) |
| 27 | | unfi 9211 |
. . . . . . . 8
⊢ (((𝐹 “ 𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → ((𝐹 “ 𝑦) ∪ (𝐹 “ {𝑧})) ∈ Fin) |
| 28 | 26, 27 | eqeltrid 2845 |
. . . . . . 7
⊢ (((𝐹 “ 𝑦) ∈ Fin ∧ (𝐹 “ {𝑧}) ∈ Fin) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin) |
| 29 | 25, 28 | sylan2 593 |
. . . . . 6
⊢ (((𝐹 “ 𝑦) ∈ Fin ∧ Fun 𝐹) → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin) |
| 30 | 29 | expcom 413 |
. . . . 5
⊢ (Fun
𝐹 → ((𝐹 “ 𝑦) ∈ Fin → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)) |
| 31 | 30 | a2i 14 |
. . . 4
⊢ ((Fun
𝐹 → (𝐹 “ 𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin)) |
| 32 | 31 | a1i 11 |
. . 3
⊢ (𝑦 ∈ Fin → ((Fun 𝐹 → (𝐹 “ 𝑦) ∈ Fin) → (Fun 𝐹 → (𝐹 “ (𝑦 ∪ {𝑧})) ∈ Fin))) |
| 33 | 3, 6, 9, 12, 16, 32 | findcard2 9204 |
. 2
⊢ (𝑋 ∈ Fin → (Fun 𝐹 → (𝐹 “ 𝑋) ∈ Fin)) |
| 34 | 33 | impcom 407 |
1
⊢ ((Fun
𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) |