![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iscnrm3v | Structured version Visualization version GIF version |
Description: A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024.) |
Ref | Expression |
---|---|
iscnrm3v | ⊢ (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3 48748 | . 2 ⊢ (𝐽 ∈ CNrm ↔ (𝐽 ∈ Top ∧ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) | |
2 | 1 | baib 535 | 1 ⊢ (𝐽 ∈ Top → (𝐽 ∈ CNrm ↔ ∀𝑠 ∈ 𝒫 ∪ 𝐽∀𝑡 ∈ 𝒫 ∪ 𝐽(((𝑠 ∩ ((cls‘𝐽)‘𝑡)) = ∅ ∧ (((cls‘𝐽)‘𝑠) ∩ 𝑡) = ∅) → ∃𝑛 ∈ 𝐽 ∃𝑚 ∈ 𝐽 (𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 ∩ cin 3961 ⊆ wss 3962 ∅c0 4338 𝒫 cpw 4604 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 clsccl 23041 CNrmccnrm 23334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-en 8984 df-fin 8987 df-fi 9448 df-rest 17468 df-topgen 17489 df-top 22915 df-topon 22932 df-bases 22968 df-cld 23042 df-cls 23044 df-nrm 23340 df-cnrm 23341 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |