Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reim0b | Structured version Visualization version GIF version |
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.) |
Ref | Expression |
---|---|
reim0b | ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reim0 14538 | . 2 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
2 | replim 14536 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
3 | 2 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
4 | oveq2 7164 | . . . . . . . 8 ⊢ ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = (i · 0)) | |
5 | it0e0 11909 | . . . . . . . 8 ⊢ (i · 0) = 0 | |
6 | 4, 5 | eqtrdi 2809 | . . . . . . 7 ⊢ ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = 0) |
7 | 6 | oveq2d 7172 | . . . . . 6 ⊢ ((ℑ‘𝐴) = 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0)) |
8 | recl 14530 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
9 | 8 | recnd 10720 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
10 | 9 | addid1d 10891 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴)) |
11 | 7, 10 | sylan9eqr 2815 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (ℜ‘𝐴)) |
12 | 3, 11 | eqtrd 2793 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = (ℜ‘𝐴)) |
13 | 8 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) ∈ ℝ) |
14 | 12, 13 | eqeltrd 2852 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ) |
15 | 14 | ex 416 | . 2 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ)) |
16 | 1, 15 | impbid2 229 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6340 (class class class)co 7156 ℂcc 10586 ℝcr 10587 0cc0 10588 ici 10590 + caddc 10591 · cmul 10593 ℜcre 14517 ℑcim 14518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-2 11750 df-cj 14519 df-re 14520 df-im 14521 |
This theorem is referenced by: cjreb 14543 reim0bi 14592 reim0bd 14620 cnpart 14660 rlimrecl 14998 absefib 15612 efieq1re 15613 cnsubrg 20240 recld2 23529 aaliou2b 25050 logcj 25310 argimgt0 25316 logcnlem2 25347 logcnlem3 25348 logf1o2 25354 sqrtcvallem1 40749 dstregt0 42325 absimnre 42527 readdcnnred 44287 resubcnnred 44288 cndivrenred 44290 |
Copyright terms: Public domain | W3C validator |