MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reim0b Structured version   Visualization version   GIF version

Theorem reim0b 14758
Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005.)
Assertion
Ref Expression
reim0b (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))

Proof of Theorem reim0b
StepHypRef Expression
1 reim0 14757 . 2 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
2 replim 14755 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
32adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4 oveq2 7263 . . . . . . . 8 ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = (i · 0))
5 it0e0 12125 . . . . . . . 8 (i · 0) = 0
64, 5eqtrdi 2795 . . . . . . 7 ((ℑ‘𝐴) = 0 → (i · (ℑ‘𝐴)) = 0)
76oveq2d 7271 . . . . . 6 ((ℑ‘𝐴) = 0 → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0))
8 recl 14749 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
98recnd 10934 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
109addid1d 11105 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
117, 10sylan9eqr 2801 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = (ℜ‘𝐴))
123, 11eqtrd 2778 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 = (ℜ‘𝐴))
138adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → (ℜ‘𝐴) ∈ ℝ)
1412, 13eqeltrd 2839 . . 3 ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) = 0) → 𝐴 ∈ ℝ)
1514ex 412 . 2 (𝐴 ∈ ℂ → ((ℑ‘𝐴) = 0 → 𝐴 ∈ ℝ))
161, 15impbid2 225 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℑ‘𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807  cre 14736  cim 14737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740
This theorem is referenced by:  cjreb  14762  reim0bi  14811  reim0bd  14839  cnpart  14879  rlimrecl  15217  absefib  15835  efieq1re  15836  cnsubrg  20570  recld2  23883  aaliou2b  25406  logcj  25666  argimgt0  25672  logcnlem2  25703  logcnlem3  25704  logf1o2  25710  sqrtcvallem1  41128  dstregt0  42709  absimnre  42907  readdcnnred  44683  resubcnnred  44684  cndivrenred  44686
  Copyright terms: Public domain W3C validator