![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reim0 | Structured version Visualization version GIF version |
Description: The imaginary part of a real number is 0. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
reim0 | โข (๐ด โ โ โ (โโ๐ด) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 11148 | . . . 4 โข (๐ด โ โ โ ๐ด โ โ) | |
2 | it0e0 12382 | . . . . . 6 โข (i ยท 0) = 0 | |
3 | 2 | oveq2i 7373 | . . . . 5 โข (๐ด + (i ยท 0)) = (๐ด + 0) |
4 | addid1 11342 | . . . . 5 โข (๐ด โ โ โ (๐ด + 0) = ๐ด) | |
5 | 3, 4 | eqtrid 2789 | . . . 4 โข (๐ด โ โ โ (๐ด + (i ยท 0)) = ๐ด) |
6 | 1, 5 | syl 17 | . . 3 โข (๐ด โ โ โ (๐ด + (i ยท 0)) = ๐ด) |
7 | 6 | fveq2d 6851 | . 2 โข (๐ด โ โ โ (โโ(๐ด + (i ยท 0))) = (โโ๐ด)) |
8 | 0re 11164 | . . 3 โข 0 โ โ | |
9 | crim 15007 | . . 3 โข ((๐ด โ โ โง 0 โ โ) โ (โโ(๐ด + (i ยท 0))) = 0) | |
10 | 8, 9 | mpan2 690 | . 2 โข (๐ด โ โ โ (โโ(๐ด + (i ยท 0))) = 0) |
11 | 7, 10 | eqtr3d 2779 | 1 โข (๐ด โ โ โ (โโ๐ด) = 0) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1542 โ wcel 2107 โcfv 6501 (class class class)co 7362 โcc 11056 โcr 11057 0cc0 11058 ici 11060 + caddc 11061 ยท cmul 11063 โcim 14990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-2 12223 df-cj 14991 df-re 14992 df-im 14993 |
This theorem is referenced by: reim0b 15011 rereb 15012 remul2 15022 immul2 15029 im0 15045 im1 15047 reim0d 15117 sqrtneglem 15158 rlimrecl 15469 recld2 24193 relogrn 25933 logrnaddcl 25946 |
Copyright terms: Public domain | W3C validator |