Proof of Theorem dip0r
| Step | Hyp | Ref
| Expression |
| 1 | | dip0r.1 |
. . . . 5
⊢ 𝑋 = (BaseSet‘𝑈) |
| 2 | | dip0r.5 |
. . . . 5
⊢ 𝑍 = (0vec‘𝑈) |
| 3 | 1, 2 | nvzcl 30620 |
. . . 4
⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
| 5 | | eqid 2736 |
. . . 4
⊢ (
+𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) |
| 6 | | eqid 2736 |
. . . 4
⊢ (
·𝑠OLD ‘𝑈) = ( ·𝑠OLD
‘𝑈) |
| 7 | | eqid 2736 |
. . . 4
⊢
(normCV‘𝑈) = (normCV‘𝑈) |
| 8 | | dip0r.7 |
. . . 4
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
| 9 | 1, 5, 6, 7, 8 | ipval2 30693 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴𝑃𝑍) = ((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)))) / 4)) |
| 10 | 4, 9 | mpd3an3 1464 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = ((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)))) / 4)) |
| 11 | | neg1cn 12359 |
. . . . . . . . . . . . 13
⊢ -1 ∈
ℂ |
| 12 | 6, 2 | nvsz 30624 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈
ℂ) → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 13 | 11, 12 | mpan2 691 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ NrmCVec → (-1(
·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 14 | 13 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1(
·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 15 | 14 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
| 16 | 15 | fveq2d 6885 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍))) = ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))) |
| 17 | 16 | oveq1d 7425 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2) =
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2)) |
| 18 | 17 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) =
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2))) |
| 19 | 1, 5, 6, 7, 8 | ipval2lem3 30691 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) ∈ ℝ) |
| 20 | 4, 19 | mpd3an3 1464 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) ∈ ℝ) |
| 21 | 20 | recnd 11268 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) ∈ ℂ) |
| 22 | 21 | subidd 11587 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2)) = 0) |
| 23 | 18, 22 | eqtrd 2771 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) = 0) |
| 24 | | negicn 11488 |
. . . . . . . . . . . . . . 15
⊢ -i ∈
ℂ |
| 25 | 6, 2 | nvsz 30624 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ NrmCVec ∧ -i ∈
ℂ) → (-i( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 26 | 24, 25 | mpan2 691 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ NrmCVec → (-i(
·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 27 | | ax-icn 11193 |
. . . . . . . . . . . . . . 15
⊢ i ∈
ℂ |
| 28 | 6, 2 | nvsz 30624 |
. . . . . . . . . . . . . . 15
⊢ ((𝑈 ∈ NrmCVec ∧ i ∈
ℂ) → (i( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 29 | 27, 28 | mpan2 691 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ NrmCVec → (i(
·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 30 | 26, 29 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ NrmCVec → (-i(
·𝑠OLD ‘𝑈)𝑍) = (i(
·𝑠OLD ‘𝑈)𝑍)) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-i(
·𝑠OLD ‘𝑈)𝑍) = (i(
·𝑠OLD ‘𝑈)𝑍)) |
| 32 | 31 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍))) |
| 33 | 32 | fveq2d 6885 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍))) = ((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))) |
| 34 | 33 | oveq1d 7425 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2) =
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2)) |
| 35 | 34 | oveq2d 7426 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)) =
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2))) |
| 36 | 1, 5, 6, 7, 8 | ipval2lem4 30692 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) ∧ i ∈ ℂ) →
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) ∈ ℂ) |
| 37 | 27, 36 | mpan2 691 |
. . . . . . . . . 10
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) ∈ ℂ) |
| 38 | 4, 37 | mpd3an3 1464 |
. . . . . . . . 9
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) ∈ ℂ) |
| 39 | 38 | subidd 11587 |
. . . . . . . 8
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2)) = 0) |
| 40 | 35, 39 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)) = 0) |
| 41 | 40 | oveq2d 7426 |
. . . . . 6
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2))) = (i ·
0)) |
| 42 | 23, 41 | oveq12d 7428 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)))) = (0 + (i ·
0))) |
| 43 | | it0e0 12469 |
. . . . . . 7
⊢ (i
· 0) = 0 |
| 44 | 43 | oveq2i 7421 |
. . . . . 6
⊢ (0 + (i
· 0)) = (0 + 0) |
| 45 | | 00id 11415 |
. . . . . 6
⊢ (0 + 0) =
0 |
| 46 | 44, 45 | eqtri 2759 |
. . . . 5
⊢ (0 + (i
· 0)) = 0 |
| 47 | 42, 46 | eqtrdi 2787 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)))) = 0) |
| 48 | 47 | oveq1d 7425 |
. . 3
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)))) / 4) = (0 /
4)) |
| 49 | | 4cn 12330 |
. . . 4
⊢ 4 ∈
ℂ |
| 50 | | 4ne0 12353 |
. . . 4
⊢ 4 ≠
0 |
| 51 | 49, 50 | div0i 11980 |
. . 3
⊢ (0 / 4) =
0 |
| 52 | 48, 51 | eqtrdi 2787 |
. 2
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)𝑍))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-1(
·𝑠OLD ‘𝑈)𝑍)))↑2)) + (i ·
((((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(i(
·𝑠OLD ‘𝑈)𝑍)))↑2) −
(((normCV‘𝑈)‘(𝐴( +𝑣 ‘𝑈)(-i(
·𝑠OLD ‘𝑈)𝑍)))↑2)))) / 4) = 0) |
| 53 | 10, 52 | eqtrd 2771 |
1
⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝑃𝑍) = 0) |