MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dip0r Structured version   Visualization version   GIF version

Theorem dip0r 30653
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dip0r.1 𝑋 = (BaseSet‘𝑈)
dip0r.5 𝑍 = (0vec𝑈)
dip0r.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dip0r ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)

Proof of Theorem dip0r
StepHypRef Expression
1 dip0r.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dip0r.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 30570 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2730 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
6 eqid 2730 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2730 . . . 4 (normCV𝑈) = (normCV𝑈)
8 dip0r.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
91, 5, 6, 7, 8ipval2 30643 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
104, 9mpd3an3 1464 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
11 neg1cn 12178 . . . . . . . . . . . . 13 -1 ∈ ℂ
126, 2nvsz 30574 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1311, 12mpan2 691 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1413adantr 480 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1514oveq2d 7406 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1615fveq2d 6865 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍)))
1716oveq1d 7405 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2))
1817oveq2d 7406 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)))
191, 5, 6, 7, 8ipval2lem3 30641 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
204, 19mpd3an3 1464 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
2120recnd 11209 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℂ)
2221subidd 11528 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)) = 0)
2318, 22eqtrd 2765 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
24 negicn 11429 . . . . . . . . . . . . . . 15 -i ∈ ℂ
256, 2nvsz 30574 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ) → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2624, 25mpan2 691 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
27 ax-icn 11134 . . . . . . . . . . . . . . 15 i ∈ ℂ
286, 2nvsz 30574 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ) → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2927, 28mpan2 691 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
3026, 29eqtr4d 2768 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3130adantr 480 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3231oveq2d 7406 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))
3332fveq2d 6865 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍))))
3433oveq1d 7405 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2))
3534oveq2d 7406 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)))
361, 5, 6, 7, 8ipval2lem4 30642 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3727, 36mpan2 691 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
384, 37mpd3an3 1464 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3938subidd 11528 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4035, 39eqtrd 2765 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4140oveq2d 7406 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2))) = (i · 0))
4223, 41oveq12d 7408 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = (0 + (i · 0)))
43 it0e0 12412 . . . . . . 7 (i · 0) = 0
4443oveq2i 7401 . . . . . 6 (0 + (i · 0)) = (0 + 0)
45 00id 11356 . . . . . 6 (0 + 0) = 0
4644, 45eqtri 2753 . . . . 5 (0 + (i · 0)) = 0
4742, 46eqtrdi 2781 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = 0)
4847oveq1d 7405 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = (0 / 4))
49 4cn 12278 . . . 4 4 ∈ ℂ
50 4ne0 12301 . . . 4 4 ≠ 0
5149, 50div0i 11923 . . 3 (0 / 4) = 0
5248, 51eqtrdi 2781 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = 0)
5310, 52eqtrd 2765 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  4c4 12250  cexp 14033  NrmCVeccnv 30520   +𝑣 cpv 30521  BaseSetcba 30522   ·𝑠OLD cns 30523  0veccn0v 30524  normCVcnmcv 30526  ·𝑖OLDcdip 30636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-grpo 30429  df-gid 30430  df-ginv 30431  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-nmcv 30536  df-dip 30637
This theorem is referenced by:  dip0l  30654  siii  30789
  Copyright terms: Public domain W3C validator