MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dip0r Structured version   Visualization version   GIF version

Theorem dip0r 30703
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dip0r.1 𝑋 = (BaseSet‘𝑈)
dip0r.5 𝑍 = (0vec𝑈)
dip0r.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dip0r ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)

Proof of Theorem dip0r
StepHypRef Expression
1 dip0r.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 dip0r.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 30620 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2736 . . . 4 ( +𝑣𝑈) = ( +𝑣𝑈)
6 eqid 2736 . . . 4 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
7 eqid 2736 . . . 4 (normCV𝑈) = (normCV𝑈)
8 dip0r.7 . . . 4 𝑃 = (·𝑖OLD𝑈)
91, 5, 6, 7, 8ipval2 30693 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
104, 9mpd3an3 1464 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4))
11 neg1cn 12359 . . . . . . . . . . . . 13 -1 ∈ ℂ
126, 2nvsz 30624 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1311, 12mpan2 691 . . . . . . . . . . . 12 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1413adantr 480 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1514oveq2d 7426 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1615fveq2d 6885 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍)))
1716oveq1d 7425 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2))
1817oveq2d 7426 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)))
191, 5, 6, 7, 8ipval2lem3 30691 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
204, 19mpd3an3 1464 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℝ)
2120recnd 11268 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) ∈ ℂ)
2221subidd 11587 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2)) = 0)
2318, 22eqtrd 2771 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
24 negicn 11488 . . . . . . . . . . . . . . 15 -i ∈ ℂ
256, 2nvsz 30624 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ -i ∈ ℂ) → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2624, 25mpan2 691 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = 𝑍)
27 ax-icn 11193 . . . . . . . . . . . . . . 15 i ∈ ℂ
286, 2nvsz 30624 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ i ∈ ℂ) → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
2927, 28mpan2 691 . . . . . . . . . . . . . 14 (𝑈 ∈ NrmCVec → (i( ·𝑠OLD𝑈)𝑍) = 𝑍)
3026, 29eqtr4d 2774 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3130adantr 480 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-i( ·𝑠OLD𝑈)𝑍) = (i( ·𝑠OLD𝑈)𝑍))
3231oveq2d 7426 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))
3332fveq2d 6885 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍))) = ((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍))))
3433oveq1d 7425 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2) = (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2))
3534oveq2d 7426 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)))
361, 5, 6, 7, 8ipval2lem4 30692 . . . . . . . . . . 11 (((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) ∧ i ∈ ℂ) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3727, 36mpan2 691 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
384, 37mpd3an3 1464 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) ∈ ℂ)
3938subidd 11587 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4035, 39eqtrd 2771 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)) = 0)
4140oveq2d 7426 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2))) = (i · 0))
4223, 41oveq12d 7428 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = (0 + (i · 0)))
43 it0e0 12469 . . . . . . 7 (i · 0) = 0
4443oveq2i 7421 . . . . . 6 (0 + (i · 0)) = (0 + 0)
45 00id 11415 . . . . . 6 (0 + 0) = 0
4644, 45eqtri 2759 . . . . 5 (0 + (i · 0)) = 0
4742, 46eqtrdi 2787 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) = 0)
4847oveq1d 7425 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = (0 / 4))
49 4cn 12330 . . . 4 4 ∈ ℂ
50 4ne0 12353 . . . 4 4 ≠ 0
5149, 50div0i 11980 . . 3 (0 / 4) = 0
5248, 51eqtrdi 2787 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((((((normCV𝑈)‘(𝐴( +𝑣𝑈)𝑍))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))↑2)) + (i · ((((normCV𝑈)‘(𝐴( +𝑣𝑈)(i( ·𝑠OLD𝑈)𝑍)))↑2) − (((normCV𝑈)‘(𝐴( +𝑣𝑈)(-i( ·𝑠OLD𝑈)𝑍)))↑2)))) / 4) = 0)
5310, 52eqtrd 2771 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝑃𝑍) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  4c4 12302  cexp 14084  NrmCVeccnv 30570   +𝑣 cpv 30571  BaseSetcba 30572   ·𝑠OLD cns 30573  0veccn0v 30574  normCVcnmcv 30576  ·𝑖OLDcdip 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-grpo 30479  df-gid 30480  df-ginv 30481  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586  df-dip 30687
This theorem is referenced by:  dip0l  30704  siii  30839
  Copyright terms: Public domain W3C validator