![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mul01i | ⊢ (𝐴 · 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul01 10621 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 (class class class)co 6978 ℂcc 10335 0cc0 10337 · cmul 10342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-resscn 10394 ax-1cn 10395 ax-icn 10396 ax-addcl 10397 ax-addrcl 10398 ax-mulcl 10399 ax-mulrcl 10400 ax-mulcom 10401 ax-addass 10402 ax-mulass 10403 ax-distr 10404 ax-i2m1 10405 ax-1ne0 10406 ax-1rid 10407 ax-rnegex 10408 ax-rrecex 10409 ax-cnre 10410 ax-pre-lttri 10411 ax-pre-lttrn 10412 ax-pre-ltadd 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-po 5327 df-so 5328 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-ov 6981 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-ltxr 10481 |
This theorem is referenced by: ine0 10878 msqge0 10964 recextlem2 11074 eqneg 11163 crne0 11434 2t0e0 11619 it0e0 11672 num0h 11926 decmul1OLD 11980 discr 13419 sin4lt0 15411 demoivreALT 15417 gcdaddmlem 15735 bezout 15750 139prm 16316 317prm 16318 631prm 16319 1259lem4 16326 2503lem1 16329 2503lem2 16330 4001lem1 16333 4001lem2 16334 4001lem3 16335 4001lem4 16336 odadd1 18727 minveclem7 23744 itg1addlem4 24006 aalioulem3 24629 dcubic 25128 log2ublem3 25231 basellem7 25369 basellem9 25371 lgsdir2 25611 selberg2lem 25831 logdivbnd 25837 pntrsumo1 25846 pntrlog2bndlem5 25862 axpaschlem 26432 axlowdimlem6 26439 nmblolbii 28356 siilem1 28408 minvecolem7 28441 eigorthi 29398 nmbdoplbi 29585 nmcoplbi 29589 nmbdfnlbi 29610 nmcfnlbi 29613 nmopcoi 29656 itgexpif 31525 hgt750lem2 31571 subfacval2 32019 areacirc 34428 sqn5i 38603 139prmALT 43128 |
Copyright terms: Public domain | W3C validator |