| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul01i | ⊢ (𝐴 · 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul01 11313 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: ine0 11573 msqge0 11659 recextlem2 11769 eqneg 11862 crne0 12139 2t0e0 12310 it0e0 12365 num0h 12621 discr 14165 sin4lt0 16122 demoivreALT 16128 5ndvds3 16342 gcdaddmlem 16453 bezout 16472 139prm 17053 317prm 17055 631prm 17056 1259lem4 17063 2503lem1 17066 2503lem2 17067 4001lem1 17070 4001lem2 17071 4001lem3 17072 4001lem4 17073 odadd1 19745 minveclem7 25351 itg1addlem4 25616 aalioulem3 26258 dcubic 26772 log2ublem3 26874 basellem7 27013 basellem9 27015 lgsdir2 27257 selberg2lem 27477 logdivbnd 27483 pntrsumo1 27492 pntrlog2bndlem5 27508 axpaschlem 28903 axlowdimlem6 28910 nmblolbii 30761 siilem1 30813 minvecolem7 30845 eigorthi 31799 nmbdoplbi 31986 nmcoplbi 31990 nmbdfnlbi 32011 nmcfnlbi 32014 nmopcoi 32057 itgexpif 34576 hgt750lem2 34622 subfacval2 35162 areacirc 37695 60lcm7e420 41986 3lexlogpow5ineq1 42030 sqn5i 42261 139prmALT 47584 |
| Copyright terms: Public domain | W3C validator |