| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul01i | ⊢ (𝐴 · 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul01 11412 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 0cc0 11127 · cmul 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 |
| This theorem is referenced by: ine0 11670 msqge0 11756 recextlem2 11866 eqneg 11959 crne0 12231 2t0e0 12407 it0e0 12462 num0h 12718 discr 14256 sin4lt0 16211 demoivreALT 16217 5ndvds3 16430 gcdaddmlem 16541 bezout 16560 139prm 17141 317prm 17143 631prm 17144 1259lem4 17151 2503lem1 17154 2503lem2 17155 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 odadd1 19827 minveclem7 25385 itg1addlem4 25650 aalioulem3 26292 dcubic 26806 log2ublem3 26908 basellem7 27047 basellem9 27049 lgsdir2 27291 selberg2lem 27511 logdivbnd 27517 pntrsumo1 27526 pntrlog2bndlem5 27542 axpaschlem 28865 axlowdimlem6 28872 nmblolbii 30726 siilem1 30778 minvecolem7 30810 eigorthi 31764 nmbdoplbi 31951 nmcoplbi 31955 nmbdfnlbi 31976 nmcfnlbi 31979 nmopcoi 32022 itgexpif 34584 hgt750lem2 34630 subfacval2 35155 areacirc 37683 60lcm7e420 41969 3lexlogpow5ineq1 42013 sqn5i 42282 139prmALT 47558 |
| Copyright terms: Public domain | W3C validator |