| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul01i | ⊢ (𝐴 · 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul01 11360 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: ine0 11620 msqge0 11706 recextlem2 11816 eqneg 11909 crne0 12186 2t0e0 12357 it0e0 12412 num0h 12668 discr 14212 sin4lt0 16170 demoivreALT 16176 5ndvds3 16390 gcdaddmlem 16501 bezout 16520 139prm 17101 317prm 17103 631prm 17104 1259lem4 17111 2503lem1 17114 2503lem2 17115 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 odadd1 19785 minveclem7 25342 itg1addlem4 25607 aalioulem3 26249 dcubic 26763 log2ublem3 26865 basellem7 27004 basellem9 27006 lgsdir2 27248 selberg2lem 27468 logdivbnd 27474 pntrsumo1 27483 pntrlog2bndlem5 27499 axpaschlem 28874 axlowdimlem6 28881 nmblolbii 30735 siilem1 30787 minvecolem7 30819 eigorthi 31773 nmbdoplbi 31960 nmcoplbi 31964 nmbdfnlbi 31985 nmcfnlbi 31988 nmopcoi 32031 itgexpif 34604 hgt750lem2 34650 subfacval2 35181 areacirc 37714 60lcm7e420 42005 3lexlogpow5ineq1 42049 sqn5i 42280 139prmALT 47601 |
| Copyright terms: Public domain | W3C validator |