Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mul01i | ⊢ (𝐴 · 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul01 11256 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 (class class class)co 7338 ℂcc 10971 0cc0 10973 · cmul 10978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-po 5533 df-so 5534 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 |
This theorem is referenced by: ine0 11512 msqge0 11598 recextlem2 11708 eqneg 11797 crne0 12068 2t0e0 12244 it0e0 12297 num0h 12551 discr 14057 sin4lt0 16004 demoivreALT 16010 gcdaddmlem 16331 bezout 16351 139prm 16923 317prm 16925 631prm 16926 1259lem4 16933 2503lem1 16936 2503lem2 16937 4001lem1 16940 4001lem2 16941 4001lem3 16942 4001lem4 16943 odadd1 19545 minveclem7 24706 itg1addlem4 24970 itg1addlem4OLD 24971 aalioulem3 25601 dcubic 26103 log2ublem3 26205 basellem7 26343 basellem9 26345 lgsdir2 26585 selberg2lem 26805 logdivbnd 26811 pntrsumo1 26820 pntrlog2bndlem5 26836 axpaschlem 27598 axlowdimlem6 27605 nmblolbii 29450 siilem1 29502 minvecolem7 29534 eigorthi 30488 nmbdoplbi 30675 nmcoplbi 30679 nmbdfnlbi 30700 nmcfnlbi 30703 nmopcoi 30746 itgexpif 32886 hgt750lem2 32932 subfacval2 33448 areacirc 36026 60lcm7e420 40323 3lexlogpow5ineq1 40367 sqn5i 40624 139prmALT 45466 |
Copyright terms: Public domain | W3C validator |