Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mul01i | ⊢ (𝐴 · 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul01 11154 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: ine0 11410 msqge0 11496 recextlem2 11606 eqneg 11695 crne0 11966 2t0e0 12142 it0e0 12195 num0h 12449 discr 13955 sin4lt0 15904 demoivreALT 15910 gcdaddmlem 16231 bezout 16251 139prm 16825 317prm 16827 631prm 16828 1259lem4 16835 2503lem1 16838 2503lem2 16839 4001lem1 16842 4001lem2 16843 4001lem3 16844 4001lem4 16845 odadd1 19449 minveclem7 24599 itg1addlem4 24863 itg1addlem4OLD 24864 aalioulem3 25494 dcubic 25996 log2ublem3 26098 basellem7 26236 basellem9 26238 lgsdir2 26478 selberg2lem 26698 logdivbnd 26704 pntrsumo1 26713 pntrlog2bndlem5 26729 axpaschlem 27308 axlowdimlem6 27315 nmblolbii 29161 siilem1 29213 minvecolem7 29245 eigorthi 30199 nmbdoplbi 30386 nmcoplbi 30390 nmbdfnlbi 30411 nmcfnlbi 30414 nmopcoi 30457 itgexpif 32586 hgt750lem2 32632 subfacval2 33149 areacirc 35870 60lcm7e420 40018 3lexlogpow5ineq1 40062 sqn5i 40313 139prmALT 45048 |
Copyright terms: Public domain | W3C validator |