Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version |
Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
mul01i | ⊢ (𝐴 · 0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | mul01 11084 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: ine0 11340 msqge0 11426 recextlem2 11536 eqneg 11625 crne0 11896 2t0e0 12072 it0e0 12125 num0h 12378 discr 13883 sin4lt0 15832 demoivreALT 15838 gcdaddmlem 16159 bezout 16179 139prm 16753 317prm 16755 631prm 16756 1259lem4 16763 2503lem1 16766 2503lem2 16767 4001lem1 16770 4001lem2 16771 4001lem3 16772 4001lem4 16773 odadd1 19364 minveclem7 24504 itg1addlem4 24768 itg1addlem4OLD 24769 aalioulem3 25399 dcubic 25901 log2ublem3 26003 basellem7 26141 basellem9 26143 lgsdir2 26383 selberg2lem 26603 logdivbnd 26609 pntrsumo1 26618 pntrlog2bndlem5 26634 axpaschlem 27211 axlowdimlem6 27218 nmblolbii 29062 siilem1 29114 minvecolem7 29146 eigorthi 30100 nmbdoplbi 30287 nmcoplbi 30291 nmbdfnlbi 30312 nmcfnlbi 30315 nmopcoi 30358 itgexpif 32486 hgt750lem2 32532 subfacval2 33049 areacirc 35797 60lcm7e420 39946 3lexlogpow5ineq1 39990 sqn5i 40234 139prmALT 44936 |
Copyright terms: Public domain | W3C validator |