| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul01i | Structured version Visualization version GIF version | ||
| Description: Multiplication by 0. Theorem I.6 of [Apostol] p. 18. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul01i | ⊢ (𝐴 · 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul01 11301 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 · 0) = 0) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 · 0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7354 ℂcc 11013 0cc0 11015 · cmul 11020 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-ltxr 11160 |
| This theorem is referenced by: ine0 11561 msqge0 11647 recextlem2 11757 eqneg 11850 crne0 12127 2t0e0 12298 it0e0 12353 num0h 12608 discr 14151 sin4lt0 16108 demoivreALT 16114 5ndvds3 16328 gcdaddmlem 16439 bezout 16458 139prm 17039 317prm 17041 631prm 17042 1259lem4 17049 2503lem1 17052 2503lem2 17053 4001lem1 17056 4001lem2 17057 4001lem3 17058 4001lem4 17059 odadd1 19764 minveclem7 25365 itg1addlem4 25630 aalioulem3 26272 dcubic 26786 log2ublem3 26888 basellem7 27027 basellem9 27029 lgsdir2 27271 selberg2lem 27491 logdivbnd 27497 pntrsumo1 27506 pntrlog2bndlem5 27522 axpaschlem 28922 axlowdimlem6 28929 nmblolbii 30783 siilem1 30835 minvecolem7 30867 eigorthi 31821 nmbdoplbi 32008 nmcoplbi 32012 nmbdfnlbi 32033 nmcfnlbi 32036 nmopcoi 32079 itgexpif 34642 hgt750lem2 34688 subfacval2 35254 areacirc 37776 60lcm7e420 42126 3lexlogpow5ineq1 42170 sqn5i 42406 139prmALT 47723 |
| Copyright terms: Public domain | W3C validator |