MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanarg Structured version   Visualization version   GIF version

Theorem tanarg 25507
Description: The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanarg ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))

Proof of Theorem tanarg
StepHypRef Expression
1 fveq2 6717 . . . . . . . 8 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
2 re0 14715 . . . . . . . 8 (ℜ‘0) = 0
31, 2eqtrdi 2794 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = 0)
43necon3i 2973 . . . . . 6 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 25457 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 596 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
76imcld 14758 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
87recnd 10861 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9 sqcl 13690 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
109adantr 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) ∈ ℂ)
11 abscl 14842 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1211adantr 484 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
1312recnd 10861 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
1413sqcld 13714 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ∈ ℂ)
15 absrpcl 14852 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
164, 15sylan2 596 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1716rpne0d 12633 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ≠ 0)
18 sqne0 13695 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
1913, 18syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2017, 19mpbird 260 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ≠ 0)
2110, 14, 14, 20divdird 11646 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
22 ax-icn 10788 . . . . . . . . 9 i ∈ ℂ
23 mulcl 10813 . . . . . . . . 9 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2422, 8, 23sylancr 590 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
25 2z 12209 . . . . . . . 8 2 ∈ ℤ
26 efexp 15662 . . . . . . . 8 (((i · (ℑ‘(log‘𝐴))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
2724, 25, 26sylancl 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
28 efiarg 25495 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
294, 28sylan2 596 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3029oveq1d 7228 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(i · (ℑ‘(log‘𝐴))))↑2) = ((𝐴 / (abs‘𝐴))↑2))
31 simpl 486 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
3231, 13, 17sqdivd 13729 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴 / (abs‘𝐴))↑2) = ((𝐴↑2) / ((abs‘𝐴)↑2)))
3327, 30, 323eqtrrd 2782 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) / ((abs‘𝐴)↑2)) = (exp‘(2 · (i · (ℑ‘(log‘𝐴))))))
3414, 20dividd 11606 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2)) = 1)
3533, 34oveq12d 7231 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))
3621, 35eqtr2d 2778 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) = (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
3710, 14addcld 10852 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ)
3822a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → i ∈ ℂ)
39 2cn 11905 . . . . . . . . . . 11 2 ∈ ℂ
40 recl 14673 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
4140adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
4241recnd 10861 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
4342sqcld 13714 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) ∈ ℂ)
44 mulcl 10813 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((ℜ‘𝐴)↑2) ∈ ℂ) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4539, 43, 44sylancr 590 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4639a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ∈ ℂ)
47 imcl 14674 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
4847adantr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 10861 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℂ)
5042, 49mulcld 10853 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (ℑ‘𝐴)) ∈ ℂ)
5138, 46, 50mul12d 11041 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
5238, 42, 49mul12d 11041 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴) · (ℑ‘𝐴))) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
5352oveq2d 7229 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
5451, 53eqtrd 2777 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
55 mulcl 10813 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
5622, 49, 55sylancr 590 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘𝐴)) ∈ ℂ)
5742, 56mulcld 10853 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ)
58 mulcl 10813 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
5939, 57, 58sylancr 590 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
6054, 59eqeltrd 2838 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) ∈ ℂ)
6138, 45, 60adddid 10857 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
62 mulcl 10813 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) ∈ ℂ)
6342, 22, 62sylancl 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ∈ ℂ)
6446, 63, 42mulassd 10856 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
6542sqvald 13713 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
6665oveq1d 7228 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (((ℜ‘𝐴) · (ℜ‘𝐴)) · i))
67 mulcom 10815 . . . . . . . . . . . . . 14 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ i ∈ ℂ) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6843, 22, 67sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6942, 42, 38mul32d 11042 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · (ℜ‘𝐴)) · i) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7066, 68, 693eqtr3d 2785 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7170oveq2d 7229 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
7246, 38, 43mul12d 11041 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (i · (2 · ((ℜ‘𝐴)↑2))))
7364, 71, 723eqtr2d 2783 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (i · (2 · ((ℜ‘𝐴)↑2))))
74 ixi 11461 . . . . . . . . . . . . 13 (i · i) = -1
7574oveq1i 7223 . . . . . . . . . . . 12 ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
76 mulcl 10813 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7739, 49, 76sylancr 590 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7877, 42mulcld 10853 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) ∈ ℂ)
7938, 38, 78mulassd 10856 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8075, 79eqtr3id 2792 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8178mulm1d 11284 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
8246, 49, 42mulassd 10856 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))))
8349, 42mulcomd 10854 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴) · (ℜ‘𝐴)) = ((ℜ‘𝐴) · (ℑ‘𝐴)))
8483oveq2d 7229 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8582, 84eqtrd 2777 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8685oveq2d 7229 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
8786oveq2d 7229 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8880, 81, 873eqtr3d 2785 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8973, 88oveq12d 7231 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
90 mulcl 10813 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · i) ∈ ℂ) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9139, 63, 90sylancr 590 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9291, 42mulcld 10853 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) ∈ ℂ)
9392, 78negsubd 11195 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9461, 89, 933eqtr2d 2783 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9549sqcld 13714 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) ∈ ℂ)
9659, 95subcld 11189 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) ∈ ℂ)
9743, 96, 43, 95add4d 11060 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
98 replim 14679 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
9998adantr 484 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
10099oveq1d 7228 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2))
101 binom2 13785 . . . . . . . . . . . . . 14 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
10242, 56, 101syl2anc 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
103 sqmul 13691 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
10422, 49, 103sylancr 590 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
105 i2 13771 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
106105oveq1i 7223 . . . . . . . . . . . . . . . 16 ((i↑2) · ((ℑ‘𝐴)↑2)) = (-1 · ((ℑ‘𝐴)↑2))
107104, 106eqtrdi 2794 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = (-1 · ((ℑ‘𝐴)↑2)))
10895mulm1d 11284 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((ℑ‘𝐴)↑2)) = -((ℑ‘𝐴)↑2))
109107, 108eqtrd 2777 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = -((ℑ‘𝐴)↑2))
110109oveq2d 7229 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)))
11143, 59addcld 10852 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) ∈ ℂ)
112111, 95negsubd 11195 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
113102, 110, 1123eqtrd 2781 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
11443, 59, 95addsubassd 11209 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
115100, 113, 1143eqtrd 2781 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
116 absvalsq2 14845 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
117116adantr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
118115, 117oveq12d 7231 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
119432timesd 12073 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)))
12059, 95npcand 11193 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
12153, 51, 1203eqtr4d 2787 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)))
122119, 121oveq12d 7231 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
12397, 118, 1223eqtr4d 2787 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
124123oveq2d 7229 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
12591, 77, 42subdird 11289 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
12694, 124, 1253eqtr4d 2787 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)))
12791, 77subcld 11189 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ∈ ℂ)
128 mulcom 10815 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
12942, 22, 128sylancl 589 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
130 simpr 488 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
131 eleq1 2825 . . . . . . . . . . . . . 14 ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → ((i · (ℜ‘𝐴)) ∈ ℝ ↔ (ℑ‘𝐴) ∈ ℝ))
13248, 131syl5ibrcom 250 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (i · (ℜ‘𝐴)) ∈ ℝ))
133 rimul 11821 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℝ ∧ (i · (ℜ‘𝐴)) ∈ ℝ) → (ℜ‘𝐴) = 0)
13441, 132, 133syl6an 684 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (ℜ‘𝐴) = 0))
135134necon3d 2961 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≠ 0 → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴)))
136130, 135mpd 15 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴))
137129, 136eqnetrd 3008 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴))
13891, 77subeq0ad 11199 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ (2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴))))
139 2ne0 11934 . . . . . . . . . . . . 13 2 ≠ 0
140139a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ≠ 0)
14163, 49, 46, 140mulcand 11465 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴)) ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
142138, 141bitrd 282 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
143142necon3bid 2985 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0 ↔ ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴)))
144137, 143mpbird 260 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0)
145127, 42, 144, 130mulne0d 11484 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) ≠ 0)
146126, 145eqnetrd 3008 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0)
147 oveq2 7221 . . . . . . . 8 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · 0))
148 it0e0 12052 . . . . . . . 8 (i · 0) = 0
149147, 148eqtrdi 2794 . . . . . . 7 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = 0)
150149necon3i 2973 . . . . . 6 ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0 → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
151146, 150syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
15237, 14, 151, 20divne0d 11624 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) ≠ 0)
15336, 152eqnetrd 3008 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0)
154 tanval3 15695 . . 3 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
1558, 153, 154syl2anc 587 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
15610, 14, 14, 20divsubdird 11647 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
15733, 34oveq12d 7231 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1))
158156, 157eqtr2d 2778 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
15936oveq2d 7229 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
16038, 37, 14, 20divassd 11643 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
161159, 160eqtr4d 2780 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)))
162158, 161oveq12d 7231 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))) = ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))))
16310, 14subcld 11189 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) ∈ ℂ)
164 mulcl 10813 . . . . 5 ((i ∈ ℂ ∧ ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
16522, 37, 164sylancr 590 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
166163, 165, 14, 146, 20divcan7d 11636 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))))
167115, 117oveq12d 7231 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
16843, 96, 95pnpcand 11226 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)))
16959, 95, 95subsub4d 11220 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
170952timesd 12073 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
171170oveq2d 7229 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
17246, 63, 49mulassd 10856 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))))
17342, 38, 49mulassd 10856 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · i) · (ℑ‘𝐴)) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
174173oveq2d 7229 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
175172, 174eqtr2d 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) = ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)))
17649sqvald 13713 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
177176oveq2d 7229 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
17846, 49, 49mulassd 10856 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
179177, 178eqtr4d 2780 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)))
180175, 179oveq12d 7231 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
18191, 77, 49subdird 11289 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
182180, 181eqtr4d 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
183169, 171, 1823eqtr2d 2783 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
184167, 168, 1833eqtrd 2781 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
185184, 126oveq12d 7231 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))) = ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))))
18649, 42, 127, 130, 144divcan5d 11634 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
187166, 185, 1863eqtrd 2781 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
188155, 162, 1873eqtrd 2781 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  cfv 6380  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730  ici 10731   + caddc 10732   · cmul 10734  cmin 11062  -cneg 11063   / cdiv 11489  2c2 11885  cz 12176  +crp 12586  cexp 13635  cre 14660  cim 14661  abscabs 14797  expce 15623  tanctan 15627  logclog 25443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ioc 12940  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-fac 13840  df-bc 13869  df-hash 13897  df-shft 14630  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-limsup 15032  df-clim 15049  df-rlim 15050  df-sum 15250  df-ef 15629  df-sin 15631  df-cos 15632  df-tan 15633  df-pi 15634  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-cnfld 20364  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lp 22033  df-perf 22034  df-cn 22124  df-cnp 22125  df-haus 22212  df-tx 22459  df-hmeo 22652  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-xms 23218  df-ms 23219  df-tms 23220  df-cncf 23775  df-limc 24763  df-dv 24764  df-log 25445
This theorem is referenced by:  logcnlem4  25533  atanlogsublem  25798
  Copyright terms: Public domain W3C validator