MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanarg Structured version   Visualization version   GIF version

Theorem tanarg 26676
Description: The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanarg ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))

Proof of Theorem tanarg
StepHypRef Expression
1 fveq2 6907 . . . . . . . 8 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
2 re0 15188 . . . . . . . 8 (ℜ‘0) = 0
31, 2eqtrdi 2791 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = 0)
43necon3i 2971 . . . . . 6 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 26625 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
76imcld 15231 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
87recnd 11287 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9 sqcl 14155 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) ∈ ℂ)
11 abscl 15314 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
1312recnd 11287 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
1413sqcld 14181 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ∈ ℂ)
15 absrpcl 15324 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
164, 15sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1716rpne0d 13080 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ≠ 0)
18 sqne0 14160 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
1913, 18syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2017, 19mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ≠ 0)
2110, 14, 14, 20divdird 12079 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
22 ax-icn 11212 . . . . . . . . 9 i ∈ ℂ
23 mulcl 11237 . . . . . . . . 9 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2422, 8, 23sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
25 2z 12647 . . . . . . . 8 2 ∈ ℤ
26 efexp 16134 . . . . . . . 8 (((i · (ℑ‘(log‘𝐴))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
2724, 25, 26sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
28 efiarg 26664 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
294, 28sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3029oveq1d 7446 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(i · (ℑ‘(log‘𝐴))))↑2) = ((𝐴 / (abs‘𝐴))↑2))
31 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
3231, 13, 17sqdivd 14196 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴 / (abs‘𝐴))↑2) = ((𝐴↑2) / ((abs‘𝐴)↑2)))
3327, 30, 323eqtrrd 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) / ((abs‘𝐴)↑2)) = (exp‘(2 · (i · (ℑ‘(log‘𝐴))))))
3414, 20dividd 12039 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2)) = 1)
3533, 34oveq12d 7449 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))
3621, 35eqtr2d 2776 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) = (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
3710, 14addcld 11278 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ)
3822a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → i ∈ ℂ)
39 2cn 12339 . . . . . . . . . . 11 2 ∈ ℂ
40 recl 15146 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
4241recnd 11287 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
4342sqcld 14181 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) ∈ ℂ)
44 mulcl 11237 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((ℜ‘𝐴)↑2) ∈ ℂ) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4539, 43, 44sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4639a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ∈ ℂ)
47 imcl 15147 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 11287 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℂ)
5042, 49mulcld 11279 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (ℑ‘𝐴)) ∈ ℂ)
5138, 46, 50mul12d 11468 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
5238, 42, 49mul12d 11468 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴) · (ℑ‘𝐴))) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
5352oveq2d 7447 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
5451, 53eqtrd 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
55 mulcl 11237 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
5622, 49, 55sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘𝐴)) ∈ ℂ)
5742, 56mulcld 11279 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ)
58 mulcl 11237 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
5939, 57, 58sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
6054, 59eqeltrd 2839 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) ∈ ℂ)
6138, 45, 60adddid 11283 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
62 mulcl 11237 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) ∈ ℂ)
6342, 22, 62sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ∈ ℂ)
6446, 63, 42mulassd 11282 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
6542sqvald 14180 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
6665oveq1d 7446 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (((ℜ‘𝐴) · (ℜ‘𝐴)) · i))
67 mulcom 11239 . . . . . . . . . . . . . 14 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ i ∈ ℂ) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6843, 22, 67sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6942, 42, 38mul32d 11469 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · (ℜ‘𝐴)) · i) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7066, 68, 693eqtr3d 2783 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7170oveq2d 7447 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
7246, 38, 43mul12d 11468 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (i · (2 · ((ℜ‘𝐴)↑2))))
7364, 71, 723eqtr2d 2781 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (i · (2 · ((ℜ‘𝐴)↑2))))
74 ixi 11890 . . . . . . . . . . . . 13 (i · i) = -1
7574oveq1i 7441 . . . . . . . . . . . 12 ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
76 mulcl 11237 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7739, 49, 76sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7877, 42mulcld 11279 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) ∈ ℂ)
7938, 38, 78mulassd 11282 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8075, 79eqtr3id 2789 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8178mulm1d 11713 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
8246, 49, 42mulassd 11282 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))))
8349, 42mulcomd 11280 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴) · (ℜ‘𝐴)) = ((ℜ‘𝐴) · (ℑ‘𝐴)))
8483oveq2d 7447 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8582, 84eqtrd 2775 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8685oveq2d 7447 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
8786oveq2d 7447 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8880, 81, 873eqtr3d 2783 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8973, 88oveq12d 7449 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
90 mulcl 11237 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · i) ∈ ℂ) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9139, 63, 90sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9291, 42mulcld 11279 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) ∈ ℂ)
9392, 78negsubd 11624 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9461, 89, 933eqtr2d 2781 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9549sqcld 14181 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) ∈ ℂ)
9659, 95subcld 11618 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) ∈ ℂ)
9743, 96, 43, 95add4d 11488 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
98 replim 15152 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
9998adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
10099oveq1d 7446 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2))
101 binom2 14253 . . . . . . . . . . . . . 14 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
10242, 56, 101syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
103 sqmul 14156 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
10422, 49, 103sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
105 i2 14238 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
106105oveq1i 7441 . . . . . . . . . . . . . . . 16 ((i↑2) · ((ℑ‘𝐴)↑2)) = (-1 · ((ℑ‘𝐴)↑2))
107104, 106eqtrdi 2791 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = (-1 · ((ℑ‘𝐴)↑2)))
10895mulm1d 11713 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((ℑ‘𝐴)↑2)) = -((ℑ‘𝐴)↑2))
109107, 108eqtrd 2775 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = -((ℑ‘𝐴)↑2))
110109oveq2d 7447 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)))
11143, 59addcld 11278 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) ∈ ℂ)
112111, 95negsubd 11624 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
113102, 110, 1123eqtrd 2779 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
11443, 59, 95addsubassd 11638 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
115100, 113, 1143eqtrd 2779 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
116 absvalsq2 15317 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
117116adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
118115, 117oveq12d 7449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
119432timesd 12507 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)))
12059, 95npcand 11622 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
12153, 51, 1203eqtr4d 2785 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)))
122119, 121oveq12d 7449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
12397, 118, 1223eqtr4d 2785 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
124123oveq2d 7447 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
12591, 77, 42subdird 11718 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
12694, 124, 1253eqtr4d 2785 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)))
12791, 77subcld 11618 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ∈ ℂ)
128 mulcom 11239 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
12942, 22, 128sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
130 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
131 eleq1 2827 . . . . . . . . . . . . . 14 ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → ((i · (ℜ‘𝐴)) ∈ ℝ ↔ (ℑ‘𝐴) ∈ ℝ))
13248, 131syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (i · (ℜ‘𝐴)) ∈ ℝ))
133 rimul 12255 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℝ ∧ (i · (ℜ‘𝐴)) ∈ ℝ) → (ℜ‘𝐴) = 0)
13441, 132, 133syl6an 684 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (ℜ‘𝐴) = 0))
135134necon3d 2959 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≠ 0 → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴)))
136130, 135mpd 15 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴))
137129, 136eqnetrd 3006 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴))
13891, 77subeq0ad 11628 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ (2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴))))
139 2ne0 12368 . . . . . . . . . . . . 13 2 ≠ 0
140139a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ≠ 0)
14163, 49, 46, 140mulcand 11894 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴)) ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
142138, 141bitrd 279 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
143142necon3bid 2983 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0 ↔ ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴)))
144137, 143mpbird 257 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0)
145127, 42, 144, 130mulne0d 11913 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) ≠ 0)
146126, 145eqnetrd 3006 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0)
147 oveq2 7439 . . . . . . . 8 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · 0))
148 it0e0 12486 . . . . . . . 8 (i · 0) = 0
149147, 148eqtrdi 2791 . . . . . . 7 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = 0)
150149necon3i 2971 . . . . . 6 ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0 → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
151146, 150syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
15237, 14, 151, 20divne0d 12057 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) ≠ 0)
15336, 152eqnetrd 3006 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0)
154 tanval3 16167 . . 3 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
1558, 153, 154syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
15610, 14, 14, 20divsubdird 12080 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
15733, 34oveq12d 7449 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1))
158156, 157eqtr2d 2776 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
15936oveq2d 7447 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
16038, 37, 14, 20divassd 12076 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
161159, 160eqtr4d 2778 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)))
162158, 161oveq12d 7449 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))) = ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))))
16310, 14subcld 11618 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) ∈ ℂ)
164 mulcl 11237 . . . . 5 ((i ∈ ℂ ∧ ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
16522, 37, 164sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
166163, 165, 14, 146, 20divcan7d 12069 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))))
167115, 117oveq12d 7449 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
16843, 96, 95pnpcand 11655 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)))
16959, 95, 95subsub4d 11649 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
170952timesd 12507 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
171170oveq2d 7447 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
17246, 63, 49mulassd 11282 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))))
17342, 38, 49mulassd 11282 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · i) · (ℑ‘𝐴)) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
174173oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
175172, 174eqtr2d 2776 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) = ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)))
17649sqvald 14180 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
177176oveq2d 7447 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
17846, 49, 49mulassd 11282 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
179177, 178eqtr4d 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)))
180175, 179oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
18191, 77, 49subdird 11718 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
182180, 181eqtr4d 2778 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
183169, 171, 1823eqtr2d 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
184167, 168, 1833eqtrd 2779 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
185184, 126oveq12d 7449 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))) = ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))))
18649, 42, 127, 130, 144divcan5d 12067 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
187166, 185, 1863eqtrd 2779 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
188155, 162, 1873eqtrd 2779 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  cz 12611  +crp 13032  cexp 14099  cre 15133  cim 15134  abscabs 15270  expce 16094  tanctan 16098  logclog 26611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-log 26613
This theorem is referenced by:  logcnlem4  26702  atanlogsublem  26973
  Copyright terms: Public domain W3C validator