MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanarg Structured version   Visualization version   GIF version

Theorem tanarg 26544
Description: The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanarg ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))

Proof of Theorem tanarg
StepHypRef Expression
1 fveq2 6826 . . . . . . . 8 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
2 re0 15077 . . . . . . . 8 (ℜ‘0) = 0
31, 2eqtrdi 2780 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = 0)
43necon3i 2957 . . . . . 6 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 26493 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
76imcld 15120 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
87recnd 11162 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9 sqcl 14043 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) ∈ ℂ)
11 abscl 15203 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
1312recnd 11162 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
1413sqcld 14069 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ∈ ℂ)
15 absrpcl 15213 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
164, 15sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1716rpne0d 12960 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ≠ 0)
18 sqne0 14048 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
1913, 18syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2017, 19mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ≠ 0)
2110, 14, 14, 20divdird 11956 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
22 ax-icn 11087 . . . . . . . . 9 i ∈ ℂ
23 mulcl 11112 . . . . . . . . 9 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2422, 8, 23sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
25 2z 12525 . . . . . . . 8 2 ∈ ℤ
26 efexp 16028 . . . . . . . 8 (((i · (ℑ‘(log‘𝐴))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
2724, 25, 26sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
28 efiarg 26532 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
294, 28sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3029oveq1d 7368 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(i · (ℑ‘(log‘𝐴))))↑2) = ((𝐴 / (abs‘𝐴))↑2))
31 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
3231, 13, 17sqdivd 14084 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴 / (abs‘𝐴))↑2) = ((𝐴↑2) / ((abs‘𝐴)↑2)))
3327, 30, 323eqtrrd 2769 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) / ((abs‘𝐴)↑2)) = (exp‘(2 · (i · (ℑ‘(log‘𝐴))))))
3414, 20dividd 11916 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2)) = 1)
3533, 34oveq12d 7371 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))
3621, 35eqtr2d 2765 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) = (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
3710, 14addcld 11153 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ)
3822a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → i ∈ ℂ)
39 2cn 12221 . . . . . . . . . . 11 2 ∈ ℂ
40 recl 15035 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
4241recnd 11162 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
4342sqcld 14069 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) ∈ ℂ)
44 mulcl 11112 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((ℜ‘𝐴)↑2) ∈ ℂ) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4539, 43, 44sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4639a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ∈ ℂ)
47 imcl 15036 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 11162 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℂ)
5042, 49mulcld 11154 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (ℑ‘𝐴)) ∈ ℂ)
5138, 46, 50mul12d 11343 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
5238, 42, 49mul12d 11343 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴) · (ℑ‘𝐴))) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
5352oveq2d 7369 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
5451, 53eqtrd 2764 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
55 mulcl 11112 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
5622, 49, 55sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘𝐴)) ∈ ℂ)
5742, 56mulcld 11154 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ)
58 mulcl 11112 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
5939, 57, 58sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
6054, 59eqeltrd 2828 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) ∈ ℂ)
6138, 45, 60adddid 11158 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
62 mulcl 11112 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) ∈ ℂ)
6342, 22, 62sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ∈ ℂ)
6446, 63, 42mulassd 11157 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
6542sqvald 14068 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
6665oveq1d 7368 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (((ℜ‘𝐴) · (ℜ‘𝐴)) · i))
67 mulcom 11114 . . . . . . . . . . . . . 14 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ i ∈ ℂ) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6843, 22, 67sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6942, 42, 38mul32d 11344 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · (ℜ‘𝐴)) · i) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7066, 68, 693eqtr3d 2772 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7170oveq2d 7369 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
7246, 38, 43mul12d 11343 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (i · (2 · ((ℜ‘𝐴)↑2))))
7364, 71, 723eqtr2d 2770 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (i · (2 · ((ℜ‘𝐴)↑2))))
74 ixi 11767 . . . . . . . . . . . . 13 (i · i) = -1
7574oveq1i 7363 . . . . . . . . . . . 12 ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
76 mulcl 11112 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7739, 49, 76sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7877, 42mulcld 11154 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) ∈ ℂ)
7938, 38, 78mulassd 11157 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8075, 79eqtr3id 2778 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8178mulm1d 11590 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
8246, 49, 42mulassd 11157 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))))
8349, 42mulcomd 11155 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴) · (ℜ‘𝐴)) = ((ℜ‘𝐴) · (ℑ‘𝐴)))
8483oveq2d 7369 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8582, 84eqtrd 2764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8685oveq2d 7369 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
8786oveq2d 7369 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8880, 81, 873eqtr3d 2772 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8973, 88oveq12d 7371 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
90 mulcl 11112 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · i) ∈ ℂ) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9139, 63, 90sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9291, 42mulcld 11154 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) ∈ ℂ)
9392, 78negsubd 11499 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9461, 89, 933eqtr2d 2770 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9549sqcld 14069 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) ∈ ℂ)
9659, 95subcld 11493 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) ∈ ℂ)
9743, 96, 43, 95add4d 11363 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
98 replim 15041 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
9998adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
10099oveq1d 7368 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2))
101 binom2 14142 . . . . . . . . . . . . . 14 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
10242, 56, 101syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
103 sqmul 14044 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
10422, 49, 103sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
105 i2 14127 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
106105oveq1i 7363 . . . . . . . . . . . . . . . 16 ((i↑2) · ((ℑ‘𝐴)↑2)) = (-1 · ((ℑ‘𝐴)↑2))
107104, 106eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = (-1 · ((ℑ‘𝐴)↑2)))
10895mulm1d 11590 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((ℑ‘𝐴)↑2)) = -((ℑ‘𝐴)↑2))
109107, 108eqtrd 2764 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = -((ℑ‘𝐴)↑2))
110109oveq2d 7369 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)))
11143, 59addcld 11153 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) ∈ ℂ)
112111, 95negsubd 11499 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
113102, 110, 1123eqtrd 2768 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
11443, 59, 95addsubassd 11513 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
115100, 113, 1143eqtrd 2768 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
116 absvalsq2 15206 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
117116adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
118115, 117oveq12d 7371 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
119432timesd 12385 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)))
12059, 95npcand 11497 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
12153, 51, 1203eqtr4d 2774 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)))
122119, 121oveq12d 7371 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
12397, 118, 1223eqtr4d 2774 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
124123oveq2d 7369 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
12591, 77, 42subdird 11595 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
12694, 124, 1253eqtr4d 2774 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)))
12791, 77subcld 11493 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ∈ ℂ)
128 mulcom 11114 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
12942, 22, 128sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
130 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
131 eleq1 2816 . . . . . . . . . . . . . 14 ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → ((i · (ℜ‘𝐴)) ∈ ℝ ↔ (ℑ‘𝐴) ∈ ℝ))
13248, 131syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (i · (ℜ‘𝐴)) ∈ ℝ))
133 rimul 12137 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℝ ∧ (i · (ℜ‘𝐴)) ∈ ℝ) → (ℜ‘𝐴) = 0)
13441, 132, 133syl6an 684 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (ℜ‘𝐴) = 0))
135134necon3d 2946 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≠ 0 → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴)))
136130, 135mpd 15 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴))
137129, 136eqnetrd 2992 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴))
13891, 77subeq0ad 11503 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ (2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴))))
139 2ne0 12250 . . . . . . . . . . . . 13 2 ≠ 0
140139a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ≠ 0)
14163, 49, 46, 140mulcand 11771 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴)) ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
142138, 141bitrd 279 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
143142necon3bid 2969 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0 ↔ ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴)))
144137, 143mpbird 257 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0)
145127, 42, 144, 130mulne0d 11790 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) ≠ 0)
146126, 145eqnetrd 2992 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0)
147 oveq2 7361 . . . . . . . 8 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · 0))
148 it0e0 12365 . . . . . . . 8 (i · 0) = 0
149147, 148eqtrdi 2780 . . . . . . 7 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = 0)
150149necon3i 2957 . . . . . 6 ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0 → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
151146, 150syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
15237, 14, 151, 20divne0d 11934 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) ≠ 0)
15336, 152eqnetrd 2992 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0)
154 tanval3 16061 . . 3 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
1558, 153, 154syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
15610, 14, 14, 20divsubdird 11957 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
15733, 34oveq12d 7371 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1))
158156, 157eqtr2d 2765 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
15936oveq2d 7369 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
16038, 37, 14, 20divassd 11953 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
161159, 160eqtr4d 2767 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)))
162158, 161oveq12d 7371 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))) = ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))))
16310, 14subcld 11493 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) ∈ ℂ)
164 mulcl 11112 . . . . 5 ((i ∈ ℂ ∧ ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
16522, 37, 164sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
166163, 165, 14, 146, 20divcan7d 11946 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))))
167115, 117oveq12d 7371 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
16843, 96, 95pnpcand 11530 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)))
16959, 95, 95subsub4d 11524 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
170952timesd 12385 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
171170oveq2d 7369 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
17246, 63, 49mulassd 11157 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))))
17342, 38, 49mulassd 11157 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · i) · (ℑ‘𝐴)) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
174173oveq2d 7369 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
175172, 174eqtr2d 2765 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) = ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)))
17649sqvald 14068 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
177176oveq2d 7369 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
17846, 49, 49mulassd 11157 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
179177, 178eqtr4d 2767 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)))
180175, 179oveq12d 7371 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
18191, 77, 49subdird 11595 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
182180, 181eqtr4d 2767 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
183169, 171, 1823eqtr2d 2770 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
184167, 168, 1833eqtrd 2768 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
185184, 126oveq12d 7371 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))) = ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))))
18649, 42, 127, 130, 144divcan5d 11944 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
187166, 185, 1863eqtrd 2768 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
188155, 162, 1873eqtrd 2768 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  cz 12489  +crp 12911  cexp 13986  cre 15022  cim 15023  abscabs 15159  expce 15986  tanctan 15990  logclog 26479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481
This theorem is referenced by:  logcnlem4  26570  atanlogsublem  26841
  Copyright terms: Public domain W3C validator