MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanarg Structured version   Visualization version   GIF version

Theorem tanarg 26662
Description: The basic relation between the "arg" function ℑ ∘ log and the arctangent. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
tanarg ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))

Proof of Theorem tanarg
StepHypRef Expression
1 fveq2 6905 . . . . . . . 8 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
2 re0 15192 . . . . . . . 8 (ℜ‘0) = 0
31, 2eqtrdi 2792 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = 0)
43necon3i 2972 . . . . . 6 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
5 logcl 26611 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
64, 5sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘𝐴) ∈ ℂ)
76imcld 15235 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
87recnd 11290 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
9 sqcl 14159 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
109adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) ∈ ℂ)
11 abscl 15318 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
1312recnd 11290 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
1413sqcld 14185 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ∈ ℂ)
15 absrpcl 15328 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
164, 15sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ+)
1716rpne0d 13083 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (abs‘𝐴) ≠ 0)
18 sqne0 14164 . . . . . . . 8 ((abs‘𝐴) ∈ ℂ → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
1913, 18syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) ≠ 0 ↔ (abs‘𝐴) ≠ 0))
2017, 19mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) ≠ 0)
2110, 14, 14, 20divdird 12082 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
22 ax-icn 11215 . . . . . . . . 9 i ∈ ℂ
23 mulcl 11240 . . . . . . . . 9 ((i ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
2422, 8, 23sylancr 587 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘(log‘𝐴))) ∈ ℂ)
25 2z 12651 . . . . . . . 8 2 ∈ ℤ
26 efexp 16138 . . . . . . . 8 (((i · (ℑ‘(log‘𝐴))) ∈ ℂ ∧ 2 ∈ ℤ) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
2724, 25, 26sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(2 · (i · (ℑ‘(log‘𝐴))))) = ((exp‘(i · (ℑ‘(log‘𝐴))))↑2))
28 efiarg 26650 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
294, 28sylan2 593 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3029oveq1d 7447 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(i · (ℑ‘(log‘𝐴))))↑2) = ((𝐴 / (abs‘𝐴))↑2))
31 simpl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
3231, 13, 17sqdivd 14200 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴 / (abs‘𝐴))↑2) = ((𝐴↑2) / ((abs‘𝐴)↑2)))
3327, 30, 323eqtrrd 2781 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) / ((abs‘𝐴)↑2)) = (exp‘(2 · (i · (ℑ‘(log‘𝐴))))))
3414, 20dividd 12042 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2)) = 1)
3533, 34oveq12d 7450 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) + (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))
3621, 35eqtr2d 2777 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) = (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
3710, 14addcld 11281 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ)
3822a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → i ∈ ℂ)
39 2cn 12342 . . . . . . . . . . 11 2 ∈ ℂ
40 recl 15150 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
4140adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
4241recnd 11290 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
4342sqcld 14185 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) ∈ ℂ)
44 mulcl 11240 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ ((ℜ‘𝐴)↑2) ∈ ℂ) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4539, 43, 44sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) ∈ ℂ)
4639a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ∈ ℂ)
47 imcl 15151 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℝ)
4948recnd 11290 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘𝐴) ∈ ℂ)
5042, 49mulcld 11282 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (ℑ‘𝐴)) ∈ ℂ)
5138, 46, 50mul12d 11471 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
5238, 42, 49mul12d 11471 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴) · (ℑ‘𝐴))) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
5352oveq2d 7448 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
5451, 53eqtrd 2776 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
55 mulcl 11240 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
5622, 49, 55sylancr 587 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℑ‘𝐴)) ∈ ℂ)
5742, 56mulcld 11282 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ)
58 mulcl 11240 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · (i · (ℑ‘𝐴))) ∈ ℂ) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
5939, 57, 58sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) ∈ ℂ)
6054, 59eqeltrd 2840 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) ∈ ℂ)
6138, 45, 60adddid 11286 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
62 mulcl 11240 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) ∈ ℂ)
6342, 22, 62sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ∈ ℂ)
6446, 63, 42mulassd 11285 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
6542sqvald 14184 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴)↑2) = ((ℜ‘𝐴) · (ℜ‘𝐴)))
6665oveq1d 7447 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (((ℜ‘𝐴) · (ℜ‘𝐴)) · i))
67 mulcom 11242 . . . . . . . . . . . . . 14 ((((ℜ‘𝐴)↑2) ∈ ℂ ∧ i ∈ ℂ) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6843, 22, 67sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) · i) = (i · ((ℜ‘𝐴)↑2)))
6942, 42, 38mul32d 11472 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · (ℜ‘𝐴)) · i) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7066, 68, 693eqtr3d 2784 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴) · i) · (ℜ‘𝐴)))
7170oveq2d 7448 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (2 · (((ℜ‘𝐴) · i) · (ℜ‘𝐴))))
7246, 38, 43mul12d 11471 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (i · ((ℜ‘𝐴)↑2))) = (i · (2 · ((ℜ‘𝐴)↑2))))
7364, 71, 723eqtr2d 2782 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) = (i · (2 · ((ℜ‘𝐴)↑2))))
74 ixi 11893 . . . . . . . . . . . . 13 (i · i) = -1
7574oveq1i 7442 . . . . . . . . . . . 12 ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
76 mulcl 11240 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7739, 49, 76sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (ℑ‘𝐴)) ∈ ℂ)
7877, 42mulcld 11282 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) ∈ ℂ)
7938, 38, 78mulassd 11285 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · i) · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8075, 79eqtr3id 2790 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))))
8178mulm1d 11716 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))
8246, 49, 42mulassd 11285 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))))
8349, 42mulcomd 11283 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴) · (ℜ‘𝐴)) = ((ℜ‘𝐴) · (ℑ‘𝐴)))
8483oveq2d 7448 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴) · (ℜ‘𝐴))) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8582, 84eqtrd 2776 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))
8685oveq2d 7448 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))
8786oveq2d 7448 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (i · ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)))) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8880, 81, 873eqtr3d 2784 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴)) = (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
8973, 88oveq12d 7450 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = ((i · (2 · ((ℜ‘𝐴)↑2))) + (i · (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
90 mulcl 11240 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ ((ℜ‘𝐴) · i) ∈ ℂ) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9139, 63, 90sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · i)) ∈ ℂ)
9291, 42mulcld 11282 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) ∈ ℂ)
9392, 78negsubd 11627 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) + -((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9461, 89, 933eqtr2d 2782 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
9549sqcld 14185 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) ∈ ℂ)
9659, 95subcld 11621 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) ∈ ℂ)
9743, 96, 43, 95add4d 11491 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
98 replim 15156 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
9998adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
10099oveq1d 7447 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2))
101 binom2 14257 . . . . . . . . . . . . . 14 (((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
10242, 56, 101syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)))
103 sqmul 14160 . . . . . . . . . . . . . . . . 17 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
10422, 49, 103sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = ((i↑2) · ((ℑ‘𝐴)↑2)))
105 i2 14242 . . . . . . . . . . . . . . . . 17 (i↑2) = -1
106105oveq1i 7442 . . . . . . . . . . . . . . . 16 ((i↑2) · ((ℑ‘𝐴)↑2)) = (-1 · ((ℑ‘𝐴)↑2))
107104, 106eqtrdi 2792 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = (-1 · ((ℑ‘𝐴)↑2)))
10895mulm1d 11716 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-1 · ((ℑ‘𝐴)↑2)) = -((ℑ‘𝐴)↑2))
109107, 108eqtrd 2776 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℑ‘𝐴))↑2) = -((ℑ‘𝐴)↑2))
110109oveq2d 7448 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + ((i · (ℑ‘𝐴))↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)))
11143, 59addcld 11281 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) ∈ ℂ)
112111, 95negsubd 11627 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) + -((ℑ‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
113102, 110, 1123eqtrd 2780 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴)))↑2) = ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)))
11443, 59, 95addsubassd 11641 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))) − ((ℑ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
115100, 113, 1143eqtrd 2780 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴↑2) = (((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))))
116 absvalsq2 15321 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
117116adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((abs‘𝐴)↑2) = (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
118115, 117oveq12d 7450 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) + (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
119432timesd 12511 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴)↑2)) = (((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)))
12059, 95npcand 11625 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
12153, 51, 1203eqtr4d 2786 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2)))
122119, 121oveq12d 7450 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))) = ((((ℜ‘𝐴)↑2) + ((ℜ‘𝐴)↑2)) + (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) + ((ℑ‘𝐴)↑2))))
12397, 118, 1223eqtr4d 2786 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴))))))
124123oveq2d 7448 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · ((2 · ((ℜ‘𝐴)↑2)) + (i · (2 · ((ℜ‘𝐴) · (ℑ‘𝐴)))))))
12591, 77, 42subdird 11721 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℜ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℜ‘𝐴))))
12694, 124, 1253eqtr4d 2786 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)))
12791, 77subcld 11621 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ∈ ℂ)
128 mulcom 11242 . . . . . . . . . . 11 (((ℜ‘𝐴) ∈ ℂ ∧ i ∈ ℂ) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
12942, 22, 128sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) = (i · (ℜ‘𝐴)))
130 simpr 484 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
131 eleq1 2828 . . . . . . . . . . . . . 14 ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → ((i · (ℜ‘𝐴)) ∈ ℝ ↔ (ℑ‘𝐴) ∈ ℝ))
13248, 131syl5ibrcom 247 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (i · (ℜ‘𝐴)) ∈ ℝ))
133 rimul 12258 . . . . . . . . . . . . 13 (((ℜ‘𝐴) ∈ ℝ ∧ (i · (ℜ‘𝐴)) ∈ ℝ) → (ℜ‘𝐴) = 0)
13441, 132, 133syl6an 684 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · (ℜ‘𝐴)) = (ℑ‘𝐴) → (ℜ‘𝐴) = 0))
135134necon3d 2960 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≠ 0 → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴)))
136130, 135mpd 15 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (ℜ‘𝐴)) ≠ (ℑ‘𝐴))
137129, 136eqnetrd 3007 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴))
13891, 77subeq0ad 11631 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ (2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴))))
139 2ne0 12371 . . . . . . . . . . . . 13 2 ≠ 0
140139a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 2 ≠ 0)
14163, 49, 46, 140mulcand 11897 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) = (2 · (ℑ‘𝐴)) ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
142138, 141bitrd 279 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) = 0 ↔ ((ℜ‘𝐴) · i) = (ℑ‘𝐴)))
143142necon3bid 2984 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0 ↔ ((ℜ‘𝐴) · i) ≠ (ℑ‘𝐴)))
144137, 143mpbird 257 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) ≠ 0)
145127, 42, 144, 130mulne0d 11916 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴)) ≠ 0)
146126, 145eqnetrd 3007 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0)
147 oveq2 7440 . . . . . . . 8 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = (i · 0))
148 it0e0 12491 . . . . . . . 8 (i · 0) = 0
149147, 148eqtrdi 2792 . . . . . . 7 (((𝐴↑2) + ((abs‘𝐴)↑2)) = 0 → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) = 0)
150149necon3i 2972 . . . . . 6 ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ≠ 0 → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
151146, 150syl 17 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) + ((abs‘𝐴)↑2)) ≠ 0)
15237, 14, 151, 20divne0d 12060 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) ≠ 0)
15336, 152eqnetrd 3007 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0)
154 tanval3 16171 . . 3 (((ℑ‘(log‘𝐴)) ∈ ℂ ∧ ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
1558, 153, 154syl2anc 584 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))))
15610, 14, 14, 20divsubdird 12083 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) = (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))))
15733, 34oveq12d 7450 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) / ((abs‘𝐴)↑2)) − (((abs‘𝐴)↑2) / ((abs‘𝐴)↑2))) = ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1))
158156, 157eqtr2d 2777 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)))
15936oveq2d 7448 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
16038, 37, 14, 20divassd 12079 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)) = (i · (((𝐴↑2) + ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2))))
161159, 160eqtr4d 2779 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1)) = ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2)))
162158, 161oveq12d 7450 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) − 1) / (i · ((exp‘(2 · (i · (ℑ‘(log‘𝐴))))) + 1))) = ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))))
16310, 14subcld 11621 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) ∈ ℂ)
164 mulcl 11240 . . . . 5 ((i ∈ ℂ ∧ ((𝐴↑2) + ((abs‘𝐴)↑2)) ∈ ℂ) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
16522, 37, 164sylancr 587 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · ((𝐴↑2) + ((abs‘𝐴)↑2))) ∈ ℂ)
166163, 165, 14, 146, 20divcan7d 12072 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))))
167115, 117oveq12d 7450 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
16843, 96, 95pnpcand 11658 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((ℜ‘𝐴)↑2) + ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2))) − (((ℜ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)))
16959, 95, 95subsub4d 11652 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
170952timesd 12511 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2)))
171170oveq2d 7448 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (((ℑ‘𝐴)↑2) + ((ℑ‘𝐴)↑2))))
17246, 63, 49mulassd 11285 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) = (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))))
17342, 38, 49mulassd 11285 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((ℜ‘𝐴) · i) · (ℑ‘𝐴)) = ((ℜ‘𝐴) · (i · (ℑ‘𝐴))))
174173oveq2d 7448 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · (((ℜ‘𝐴) · i) · (ℑ‘𝐴))) = (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))))
175172, 174eqtr2d 2777 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) = ((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)))
17649sqvald 14184 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘𝐴)↑2) = ((ℑ‘𝐴) · (ℑ‘𝐴)))
177176oveq2d 7448 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
17846, 49, 49mulassd 11285 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)) = (2 · ((ℑ‘𝐴) · (ℑ‘𝐴))))
179177, 178eqtr4d 2779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (2 · ((ℑ‘𝐴)↑2)) = ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴)))
180175, 179oveq12d 7450 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
18191, 77, 49subdird 11721 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) = (((2 · ((ℜ‘𝐴) · i)) · (ℑ‘𝐴)) − ((2 · (ℑ‘𝐴)) · (ℑ‘𝐴))))
182180, 181eqtr4d 2779 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − (2 · ((ℑ‘𝐴)↑2))) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
183169, 171, 1823eqtr2d 2782 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((2 · ((ℜ‘𝐴) · (i · (ℑ‘𝐴)))) − ((ℑ‘𝐴)↑2)) − ((ℑ‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
184167, 168, 1833eqtrd 2780 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((𝐴↑2) − ((abs‘𝐴)↑2)) = (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)))
185184, 126oveq12d 7450 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (((𝐴↑2) − ((abs‘𝐴)↑2)) / (i · ((𝐴↑2) + ((abs‘𝐴)↑2)))) = ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))))
18649, 42, 127, 130, 144divcan5d 12070 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℑ‘𝐴)) / (((2 · ((ℜ‘𝐴) · i)) − (2 · (ℑ‘𝐴))) · (ℜ‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
187166, 185, 1863eqtrd 2780 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((((𝐴↑2) − ((abs‘𝐴)↑2)) / ((abs‘𝐴)↑2)) / ((i · ((𝐴↑2) + ((abs‘𝐴)↑2))) / ((abs‘𝐴)↑2))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
188155, 162, 1873eqtrd 2780 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (tan‘(ℑ‘(log‘𝐴))) = ((ℑ‘𝐴) / (ℜ‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  cz 12615  +crp 13035  cexp 14103  cre 15137  cim 15138  abscabs 15274  expce 16098  tanctan 16102  logclog 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-tan 16108  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599
This theorem is referenced by:  logcnlem4  26688  atanlogsublem  26959
  Copyright terms: Public domain W3C validator