MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereb Structured version   Visualization version   GIF version

Theorem rereb 15099
Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
Assertion
Ref Expression
rereb (๐ด โˆˆ โ„‚ โ†’ (๐ด โˆˆ โ„ โ†” (โ„œโ€˜๐ด) = ๐ด))

Proof of Theorem rereb
StepHypRef Expression
1 replim 15095 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ๐ด = ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))))
21adantr 480 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„) โ†’ ๐ด = ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))))
3 reim0 15097 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ (โ„‘โ€˜๐ด) = 0)
43oveq2d 7436 . . . . . 6 (๐ด โˆˆ โ„ โ†’ (i ยท (โ„‘โ€˜๐ด)) = (i ยท 0))
5 it0e0 12464 . . . . . 6 (i ยท 0) = 0
64, 5eqtrdi 2784 . . . . 5 (๐ด โˆˆ โ„ โ†’ (i ยท (โ„‘โ€˜๐ด)) = 0)
76adantl 481 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„) โ†’ (i ยท (โ„‘โ€˜๐ด)) = 0)
87oveq2d 7436 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„) โ†’ ((โ„œโ€˜๐ด) + (i ยท (โ„‘โ€˜๐ด))) = ((โ„œโ€˜๐ด) + 0))
9 recl 15089 . . . . . 6 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
109recnd 11272 . . . . 5 (๐ด โˆˆ โ„‚ โ†’ (โ„œโ€˜๐ด) โˆˆ โ„‚)
1110addridd 11444 . . . 4 (๐ด โˆˆ โ„‚ โ†’ ((โ„œโ€˜๐ด) + 0) = (โ„œโ€˜๐ด))
1211adantr 480 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„) โ†’ ((โ„œโ€˜๐ด) + 0) = (โ„œโ€˜๐ด))
132, 8, 123eqtrrd 2773 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„) โ†’ (โ„œโ€˜๐ด) = ๐ด)
14 simpr 484 . . 3 ((๐ด โˆˆ โ„‚ โˆง (โ„œโ€˜๐ด) = ๐ด) โ†’ (โ„œโ€˜๐ด) = ๐ด)
159adantr 480 . . 3 ((๐ด โˆˆ โ„‚ โˆง (โ„œโ€˜๐ด) = ๐ด) โ†’ (โ„œโ€˜๐ด) โˆˆ โ„)
1614, 15eqeltrrd 2830 . 2 ((๐ด โˆˆ โ„‚ โˆง (โ„œโ€˜๐ด) = ๐ด) โ†’ ๐ด โˆˆ โ„)
1713, 16impbida 800 1 (๐ด โˆˆ โ„‚ โ†’ (๐ด โˆˆ โ„ โ†” (โ„œโ€˜๐ด) = ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   = wceq 1534   โˆˆ wcel 2099  โ€˜cfv 6548  (class class class)co 7420  โ„‚cc 11136  โ„cr 11137  0cc0 11138  ici 11140   + caddc 11141   ยท cmul 11143  โ„œcre 15076  โ„‘cim 15077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-2 12305  df-cj 15078  df-re 15079  df-im 15080
This theorem is referenced by:  mulre  15100  rere  15101  rerebi  15152  rerebd  15180  rennim  15218
  Copyright terms: Public domain W3C validator