| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rereb | Structured version Visualization version GIF version | ||
| Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.) |
| Ref | Expression |
|---|---|
| rereb | ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | replim 15018 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) |
| 3 | reim0 15020 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0) | |
| 4 | 3 | oveq2d 7357 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = (i · 0)) |
| 5 | it0e0 12339 | . . . . . 6 ⊢ (i · 0) = 0 | |
| 6 | 4, 5 | eqtrdi 2782 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = 0) |
| 7 | 6 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (i · (ℑ‘𝐴)) = 0) |
| 8 | 7 | oveq2d 7357 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0)) |
| 9 | recl 15012 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ) | |
| 10 | 9 | recnd 11135 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ) |
| 11 | 10 | addridd 11308 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴)) |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴)) |
| 13 | 2, 8, 12 | 3eqtrrd 2771 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (ℜ‘𝐴) = 𝐴) |
| 14 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) = 𝐴) | |
| 15 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) ∈ ℝ) |
| 16 | 14, 15 | eqeltrrd 2832 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → 𝐴 ∈ ℝ) |
| 17 | 13, 16 | impbida 800 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ℂcc 10999 ℝcr 11000 0cc0 11001 ici 11003 + caddc 11004 · cmul 11006 ℜcre 14999 ℑcim 15000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-cj 15001 df-re 15002 df-im 15003 |
| This theorem is referenced by: mulre 15023 rere 15024 rerebi 15075 rerebd 15103 rennim 15141 |
| Copyright terms: Public domain | W3C validator |