MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereb Structured version   Visualization version   GIF version

Theorem rereb 15156
Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
Assertion
Ref Expression
rereb (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))

Proof of Theorem rereb
StepHypRef Expression
1 replim 15152 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
3 reim0 15154 . . . . . . 7 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
43oveq2d 7447 . . . . . 6 (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = (i · 0))
5 it0e0 12486 . . . . . 6 (i · 0) = 0
64, 5eqtrdi 2791 . . . . 5 (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = 0)
76adantl 481 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (i · (ℑ‘𝐴)) = 0)
87oveq2d 7447 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0))
9 recl 15146 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
109recnd 11287 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
1110addridd 11459 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
1211adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
132, 8, 123eqtrrd 2780 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (ℜ‘𝐴) = 𝐴)
14 simpr 484 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) = 𝐴)
159adantr 480 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) ∈ ℝ)
1614, 15eqeltrrd 2840 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → 𝐴 ∈ ℝ)
1713, 16impbida 801 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  ici 11155   + caddc 11156   · cmul 11158  cre 15133  cim 15134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  mulre  15157  rere  15158  rerebi  15209  rerebd  15237  rennim  15275
  Copyright terms: Public domain W3C validator