MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rereb Structured version   Visualization version   GIF version

Theorem rereb 14236
Description: A number is real iff it equals its real part. Proposition 10-3.4(f) of [Gleason] p. 133. (Contributed by NM, 20-Aug-2008.)
Assertion
Ref Expression
rereb (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))

Proof of Theorem rereb
StepHypRef Expression
1 replim 14232 . . . 4 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
21adantr 474 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
3 reim0 14234 . . . . . . 7 (𝐴 ∈ ℝ → (ℑ‘𝐴) = 0)
43oveq2d 6920 . . . . . 6 (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = (i · 0))
5 it0e0 11579 . . . . . 6 (i · 0) = 0
64, 5syl6eq 2876 . . . . 5 (𝐴 ∈ ℝ → (i · (ℑ‘𝐴)) = 0)
76adantl 475 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (i · (ℑ‘𝐴)) = 0)
87oveq2d 6920 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) = ((ℜ‘𝐴) + 0))
9 recl 14226 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
109recnd 10384 . . . . 5 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℂ)
1110addid1d 10554 . . . 4 (𝐴 ∈ ℂ → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
1211adantr 474 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → ((ℜ‘𝐴) + 0) = (ℜ‘𝐴))
132, 8, 123eqtrrd 2865 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℝ) → (ℜ‘𝐴) = 𝐴)
14 simpr 479 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) = 𝐴)
159adantr 474 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → (ℜ‘𝐴) ∈ ℝ)
1614, 15eqeltrrd 2906 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 𝐴) → 𝐴 ∈ ℝ)
1713, 16impbida 837 1 (𝐴 ∈ ℂ → (𝐴 ∈ ℝ ↔ (ℜ‘𝐴) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  cfv 6122  (class class class)co 6904  cc 10249  cr 10250  0cc0 10251  ici 10253   + caddc 10254   · cmul 10256  cre 14213  cim 14214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-po 5262  df-so 5263  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-2 11413  df-cj 14215  df-re 14216  df-im 14217
This theorem is referenced by:  mulre  14237  rere  14238  rerebi  14289  rerebd  14317  rennim  14355
  Copyright terms: Public domain W3C validator