| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13417 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3938 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 ℤ≥cuz 12729 ...cfz 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11344 df-z 12466 df-uz 12730 df-fz 13405 |
| This theorem is referenced by: ltwefz 13867 seqcoll2 14369 caubnd 15263 climsup 15574 summolem2a 15619 fsumss 15629 fsumsers 15632 isumclim3 15663 binomlem 15733 prodmolem2a 15838 fprodntriv 15846 fprodss 15852 iprodclim3 15904 fprodefsum 15999 isprm3 16591 2prm 16600 prmreclem5 16829 4sqlem11 16864 gsumval3 19817 telgsums 19903 fz2ssnn0 32763 elrgspnlem2 33205 esumpcvgval 34086 esumcvg 34094 eulerpartlemsv3 34369 ballotlemfc0 34501 ballotlemfcc 34502 ballotlemiex 34510 ballotlemsima 34524 ballotlemrv2 34530 fsum2dsub 34615 erdszelem4 35226 erdszelem8 35230 volsupnfl 37704 sdclem2 37781 geomcau 37798 diophin 42804 irrapxlem1 42854 fzssnn0 45356 iuneqfzuzlem 45372 fzossuz 45418 uzublem 45467 climinf 45645 sge0uzfsumgt 46481 iundjiun 46497 caratheodorylem1 46563 |
| Copyright terms: Public domain | W3C validator |