![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
Ref | Expression |
---|---|
fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13556 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | ssriv 3998 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3962 ‘cfv 6562 (class class class)co 7430 ℤ≥cuz 12875 ...cfz 13543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-neg 11492 df-z 12611 df-uz 12876 df-fz 13544 |
This theorem is referenced by: ltwefz 14000 seqcoll2 14500 caubnd 15393 climsup 15702 summolem2a 15747 fsumss 15757 fsumsers 15760 isumclim3 15791 binomlem 15861 prodmolem2a 15966 fprodntriv 15974 fprodss 15980 iprodclim3 16032 fprodefsum 16127 isprm3 16716 2prm 16725 prmreclem5 16953 4sqlem11 16988 gsumval3 19939 telgsums 20025 fz2ssnn0 32793 elrgspnlem2 33232 esumpcvgval 34058 esumcvg 34066 eulerpartlemsv3 34342 ballotlemfc0 34473 ballotlemfcc 34474 ballotlemiex 34482 ballotlemsima 34496 ballotlemrv2 34502 fsum2dsub 34600 erdszelem4 35178 erdszelem8 35182 volsupnfl 37651 sdclem2 37728 geomcau 37745 diophin 42759 irrapxlem1 42809 fzssnn0 45267 iuneqfzuzlem 45283 fzossuz 45330 uzublem 45379 climinf 45561 sge0uzfsumgt 46399 iundjiun 46415 caratheodorylem1 46481 |
Copyright terms: Public domain | W3C validator |