Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
Ref | Expression |
---|---|
fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13252 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | ssriv 3925 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 ℤ≥cuz 12582 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-neg 11208 df-z 12320 df-uz 12583 df-fz 13240 |
This theorem is referenced by: ltwefz 13683 seqcoll2 14179 caubnd 15070 climsup 15381 summolem2a 15427 fsumss 15437 fsumsers 15440 isumclim3 15471 binomlem 15541 prodmolem2a 15644 fprodntriv 15652 fprodss 15658 iprodclim3 15710 fprodefsum 15804 isprm3 16388 2prm 16397 prmreclem5 16621 4sqlem11 16656 gsumval3 19508 telgsums 19594 fz2ssnn0 31106 esumpcvgval 32046 esumcvg 32054 eulerpartlemsv3 32328 ballotlemfc0 32459 ballotlemfcc 32460 ballotlemiex 32468 ballotlemsima 32482 ballotlemrv2 32488 fsum2dsub 32587 erdszelem4 33156 erdszelem8 33160 volsupnfl 35822 sdclem2 35900 geomcau 35917 diophin 40594 irrapxlem1 40644 fzssnn0 42856 iuneqfzuzlem 42873 fzossuz 42920 uzublem 42970 climinf 43147 sge0uzfsumgt 43982 iundjiun 43998 caratheodorylem1 44064 |
Copyright terms: Public domain | W3C validator |