Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
Ref | Expression |
---|---|
fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13181 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | ssriv 3921 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ℤ≥cuz 12511 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: ltwefz 13611 seqcoll2 14107 caubnd 14998 climsup 15309 summolem2a 15355 fsumss 15365 fsumsers 15368 isumclim3 15399 binomlem 15469 prodmolem2a 15572 fprodntriv 15580 fprodss 15586 iprodclim3 15638 fprodefsum 15732 isprm3 16316 2prm 16325 prmreclem5 16549 4sqlem11 16584 gsumval3 19423 telgsums 19509 fz2ssnn0 31008 esumpcvgval 31946 esumcvg 31954 eulerpartlemsv3 32228 ballotlemfc0 32359 ballotlemfcc 32360 ballotlemiex 32368 ballotlemsima 32382 ballotlemrv2 32388 fsum2dsub 32487 erdszelem4 33056 erdszelem8 33060 volsupnfl 35749 sdclem2 35827 geomcau 35844 diophin 40510 irrapxlem1 40560 fzssnn0 42746 iuneqfzuzlem 42763 fzossuz 42810 uzublem 42860 climinf 43037 sge0uzfsumgt 43872 iundjiun 43888 caratheodorylem1 43954 |
Copyright terms: Public domain | W3C validator |