| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13537 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3962 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 ℤ≥cuz 12852 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-neg 11469 df-z 12589 df-uz 12853 df-fz 13525 |
| This theorem is referenced by: ltwefz 13981 seqcoll2 14483 caubnd 15377 climsup 15686 summolem2a 15731 fsumss 15741 fsumsers 15744 isumclim3 15775 binomlem 15845 prodmolem2a 15950 fprodntriv 15958 fprodss 15964 iprodclim3 16016 fprodefsum 16111 isprm3 16702 2prm 16711 prmreclem5 16940 4sqlem11 16975 gsumval3 19888 telgsums 19974 fz2ssnn0 32762 elrgspnlem2 33238 esumpcvgval 34109 esumcvg 34117 eulerpartlemsv3 34393 ballotlemfc0 34525 ballotlemfcc 34526 ballotlemiex 34534 ballotlemsima 34548 ballotlemrv2 34554 fsum2dsub 34639 erdszelem4 35216 erdszelem8 35220 volsupnfl 37689 sdclem2 37766 geomcau 37783 diophin 42795 irrapxlem1 42845 fzssnn0 45345 iuneqfzuzlem 45361 fzossuz 45408 uzublem 45457 climinf 45635 sge0uzfsumgt 46473 iundjiun 46489 caratheodorylem1 46555 |
| Copyright terms: Public domain | W3C validator |