![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version |
Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
Ref | Expression |
---|---|
fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 12754 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
2 | 1 | ssriv 3893 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3859 ‘cfv 6225 (class class class)co 7016 ℤ≥cuz 12093 ...cfz 12742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-1st 7545 df-2nd 7546 df-neg 10720 df-z 11830 df-uz 12094 df-fz 12743 |
This theorem is referenced by: ltwefz 13181 seqcoll2 13671 caubnd 14552 climsup 14860 summolem2a 14905 fsumss 14915 fsumsers 14918 isumclim3 14947 binomlem 15017 prodmolem2a 15121 fprodntriv 15129 fprodss 15135 iprodclim3 15187 fprodefsum 15281 isprm3 15856 2prm 15865 prmreclem5 16085 4sqlem11 16120 gsumval3 18748 telgsums 18830 fz2ssnn0 30196 esumpcvgval 30954 esumcvg 30962 eulerpartlemsv3 31236 ballotlemfc0 31367 ballotlemfcc 31368 ballotlemiex 31376 ballotlemsdom 31386 ballotlemsima 31390 ballotlemrv2 31396 fsum2dsub 31495 erdszelem4 32050 erdszelem8 32054 volsupnfl 34487 sdclem2 34568 geomcau 34585 diophin 38873 irrapxlem1 38923 fzssnn0 41145 iuneqfzuzlem 41162 fzossuz 41210 uzublem 41265 climinf 41448 sge0uzfsumgt 42288 iundjiun 42304 caratheodorylem1 42370 |
Copyright terms: Public domain | W3C validator |