| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13481 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 ℤ≥cuz 12793 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: ltwefz 13928 seqcoll2 14430 caubnd 15325 climsup 15636 summolem2a 15681 fsumss 15691 fsumsers 15694 isumclim3 15725 binomlem 15795 prodmolem2a 15900 fprodntriv 15908 fprodss 15914 iprodclim3 15966 fprodefsum 16061 isprm3 16653 2prm 16662 prmreclem5 16891 4sqlem11 16926 gsumval3 19837 telgsums 19923 fz2ssnn0 32708 elrgspnlem2 33194 esumpcvgval 34068 esumcvg 34076 eulerpartlemsv3 34352 ballotlemfc0 34484 ballotlemfcc 34485 ballotlemiex 34493 ballotlemsima 34507 ballotlemrv2 34513 fsum2dsub 34598 erdszelem4 35181 erdszelem8 35185 volsupnfl 37659 sdclem2 37736 geomcau 37753 diophin 42760 irrapxlem1 42810 fzssnn0 45314 iuneqfzuzlem 45330 fzossuz 45377 uzublem 45426 climinf 45604 sge0uzfsumgt 46442 iundjiun 46458 caratheodorylem1 46524 |
| Copyright terms: Public domain | W3C validator |