| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13488 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3953 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 ℤ≥cuz 12800 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: ltwefz 13935 seqcoll2 14437 caubnd 15332 climsup 15643 summolem2a 15688 fsumss 15698 fsumsers 15701 isumclim3 15732 binomlem 15802 prodmolem2a 15907 fprodntriv 15915 fprodss 15921 iprodclim3 15973 fprodefsum 16068 isprm3 16660 2prm 16669 prmreclem5 16898 4sqlem11 16933 gsumval3 19844 telgsums 19930 fz2ssnn0 32715 elrgspnlem2 33201 esumpcvgval 34075 esumcvg 34083 eulerpartlemsv3 34359 ballotlemfc0 34491 ballotlemfcc 34492 ballotlemiex 34500 ballotlemsima 34514 ballotlemrv2 34520 fsum2dsub 34605 erdszelem4 35188 erdszelem8 35192 volsupnfl 37666 sdclem2 37743 geomcau 37760 diophin 42767 irrapxlem1 42817 fzssnn0 45321 iuneqfzuzlem 45337 fzossuz 45384 uzublem 45433 climinf 45611 sge0uzfsumgt 46449 iundjiun 46465 caratheodorylem1 46531 |
| Copyright terms: Public domain | W3C validator |