| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13422 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 ℤ≥cuz 12738 ...cfz 13409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-neg 11354 df-z 12476 df-uz 12739 df-fz 13410 |
| This theorem is referenced by: ltwefz 13872 seqcoll2 14374 caubnd 15268 climsup 15579 summolem2a 15624 fsumss 15634 fsumsers 15637 isumclim3 15668 binomlem 15738 prodmolem2a 15843 fprodntriv 15851 fprodss 15857 iprodclim3 15909 fprodefsum 16004 isprm3 16596 2prm 16605 prmreclem5 16834 4sqlem11 16869 gsumval3 19821 telgsums 19907 fz2ssnn0 32772 elrgspnlem2 33217 esumpcvgval 34112 esumcvg 34120 eulerpartlemsv3 34395 ballotlemfc0 34527 ballotlemfcc 34528 ballotlemiex 34536 ballotlemsima 34550 ballotlemrv2 34556 fsum2dsub 34641 erdszelem4 35259 erdszelem8 35263 volsupnfl 37725 sdclem2 37802 geomcau 37819 diophin 42889 irrapxlem1 42939 fzssnn0 45441 iuneqfzuzlem 45457 fzossuz 45503 uzublem 45552 climinf 45730 sge0uzfsumgt 46566 iundjiun 46582 caratheodorylem1 46648 |
| Copyright terms: Public domain | W3C validator |