| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzssuz | Structured version Visualization version GIF version | ||
| Description: A finite set of sequential integers is a subset of an upper set of integers. (Contributed by NM, 28-Oct-2005.) |
| Ref | Expression |
|---|---|
| fzssuz | ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13441 | . 2 ⊢ (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 2 | 1 | ssriv 3941 | 1 ⊢ (𝑀...𝑁) ⊆ (ℤ≥‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 ℤ≥cuz 12753 ...cfz 13428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-neg 11368 df-z 12490 df-uz 12754 df-fz 13429 |
| This theorem is referenced by: ltwefz 13888 seqcoll2 14390 caubnd 15284 climsup 15595 summolem2a 15640 fsumss 15650 fsumsers 15653 isumclim3 15684 binomlem 15754 prodmolem2a 15859 fprodntriv 15867 fprodss 15873 iprodclim3 15925 fprodefsum 16020 isprm3 16612 2prm 16621 prmreclem5 16850 4sqlem11 16885 gsumval3 19804 telgsums 19890 fz2ssnn0 32741 elrgspnlem2 33193 esumpcvgval 34044 esumcvg 34052 eulerpartlemsv3 34328 ballotlemfc0 34460 ballotlemfcc 34461 ballotlemiex 34469 ballotlemsima 34483 ballotlemrv2 34489 fsum2dsub 34574 erdszelem4 35166 erdszelem8 35170 volsupnfl 37644 sdclem2 37721 geomcau 37738 diophin 42745 irrapxlem1 42795 fzssnn0 45298 iuneqfzuzlem 45314 fzossuz 45361 uzublem 45410 climinf 45588 sge0uzfsumgt 46426 iundjiun 46442 caratheodorylem1 46508 |
| Copyright terms: Public domain | W3C validator |