Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzd | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
elfzd.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
elfzd.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
elfzd.3 | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
elfzd.4 | ⊢ (𝜑 → 𝑀 ≤ 𝐾) |
elfzd.5 | ⊢ (𝜑 → 𝐾 ≤ 𝑁) |
Ref | Expression |
---|---|
elfzd | ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzd.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | elfzd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
3 | elfzd.3 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
4 | 1, 2, 3 | 3jca 1126 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
5 | elfzd.4 | . . 3 ⊢ (𝜑 → 𝑀 ≤ 𝐾) | |
6 | elfzd.5 | . . 3 ⊢ (𝜑 → 𝐾 ≤ 𝑁) | |
7 | 4, 5, 6 | jca32 515 | . 2 ⊢ (𝜑 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) |
8 | elfz2 13175 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁))) | |
9 | 7, 8 | sylibr 233 | 1 ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) |
Copyright terms: Public domain | W3C validator |