Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem1 Structured version   Visualization version   GIF version

Theorem knoppcnlem1 36516
Description: Lemma for knoppcn 36527. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
knoppcnlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem1.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem1.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝑀   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑦,𝑛
Allowed substitution hints:   𝐹(𝑦,𝑛)   𝑀(𝑦)

Proof of Theorem knoppcnlem1
StepHypRef Expression
1 knoppcnlem1.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 oveq2 7418 . . . . . 6 (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴))
32fveq2d 6885 . . . . 5 (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))
43oveq2d 7426 . . . 4 (𝑦 = 𝐴 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))
54mpteq2dv 5220 . . 3 (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
6 knoppcnlem1.2 . . 3 (𝜑𝐴 ∈ ℝ)
7 nn0ex 12512 . . . . 5 0 ∈ V
87mptex 7220 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V
98a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V)
101, 5, 6, 9fvmptd3 7014 . 2 (𝜑 → (𝐹𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
11 oveq2 7418 . . . 4 (𝑛 = 𝑀 → (𝐶𝑛) = (𝐶𝑀))
12 oveq2 7418 . . . . 5 (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀))
1312fvoveq1d 7432 . . . 4 (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))
1411, 13oveq12d 7428 . . 3 (𝑛 = 𝑀 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
1514adantl 481 . 2 ((𝜑𝑛 = 𝑀) → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
16 knoppcnlem1.3 . 2 (𝜑𝑀 ∈ ℕ0)
17 ovexd 7445 . 2 (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V)
1810, 15, 16, 17fvmptd 6998 1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  (class class class)co 7410  cr 11133   · cmul 11139  2c2 12300  0cn0 12506  cexp 14084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-n0 12507
This theorem is referenced by:  knoppcnlem3  36518  knoppcnlem4  36519  knoppcnlem10  36525  knoppndvlem6  36540  knoppndvlem7  36541  knoppndvlem11  36545
  Copyright terms: Public domain W3C validator