Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem1 Structured version   Visualization version   GIF version

Theorem knoppcnlem1 36609
Description: Lemma for knoppcn 36620. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
knoppcnlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem1.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem1.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝑀   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑦,𝑛
Allowed substitution hints:   𝐹(𝑦,𝑛)   𝑀(𝑦)

Proof of Theorem knoppcnlem1
StepHypRef Expression
1 knoppcnlem1.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 oveq2 7363 . . . . . 6 (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴))
32fveq2d 6835 . . . . 5 (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))
43oveq2d 7371 . . . 4 (𝑦 = 𝐴 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))
54mpteq2dv 5189 . . 3 (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
6 knoppcnlem1.2 . . 3 (𝜑𝐴 ∈ ℝ)
7 nn0ex 12398 . . . . 5 0 ∈ V
87mptex 7166 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V
98a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V)
101, 5, 6, 9fvmptd3 6961 . 2 (𝜑 → (𝐹𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
11 oveq2 7363 . . . 4 (𝑛 = 𝑀 → (𝐶𝑛) = (𝐶𝑀))
12 oveq2 7363 . . . . 5 (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀))
1312fvoveq1d 7377 . . . 4 (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))
1411, 13oveq12d 7373 . . 3 (𝑛 = 𝑀 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
1514adantl 481 . 2 ((𝜑𝑛 = 𝑀) → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
16 knoppcnlem1.3 . 2 (𝜑𝑀 ∈ ℕ0)
17 ovexd 7390 . 2 (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V)
1810, 15, 16, 17fvmptd 6945 1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5176  cfv 6489  (class class class)co 7355  cr 11016   · cmul 11022  2c2 12191  0cn0 12392  cexp 13975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-1cn 11075  ax-addcl 11077
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-nn 12137  df-n0 12393
This theorem is referenced by:  knoppcnlem3  36611  knoppcnlem4  36612  knoppcnlem10  36618  knoppndvlem6  36633  knoppndvlem7  36634  knoppndvlem11  36638
  Copyright terms: Public domain W3C validator