Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppcnlem1 Structured version   Visualization version   GIF version

Theorem knoppcnlem1 36488
Description: Lemma for knoppcn 36499. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
knoppcnlem1.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppcnlem1.2 (𝜑𝐴 ∈ ℝ)
knoppcnlem1.3 (𝜑𝑀 ∈ ℕ0)
Assertion
Ref Expression
knoppcnlem1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝑀   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑦,𝑛
Allowed substitution hints:   𝐹(𝑦,𝑛)   𝑀(𝑦)

Proof of Theorem knoppcnlem1
StepHypRef Expression
1 knoppcnlem1.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 oveq2 7398 . . . . . 6 (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴))
32fveq2d 6865 . . . . 5 (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))
43oveq2d 7406 . . . 4 (𝑦 = 𝐴 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))
54mpteq2dv 5204 . . 3 (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
6 knoppcnlem1.2 . . 3 (𝜑𝐴 ∈ ℝ)
7 nn0ex 12455 . . . . 5 0 ∈ V
87mptex 7200 . . . 4 (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V
98a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V)
101, 5, 6, 9fvmptd3 6994 . 2 (𝜑 → (𝐹𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))))
11 oveq2 7398 . . . 4 (𝑛 = 𝑀 → (𝐶𝑛) = (𝐶𝑀))
12 oveq2 7398 . . . . 5 (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀))
1312fvoveq1d 7412 . . . 4 (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))
1411, 13oveq12d 7408 . . 3 (𝑛 = 𝑀 → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
1514adantl 481 . 2 ((𝜑𝑛 = 𝑀) → ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
16 knoppcnlem1.3 . 2 (𝜑𝑀 ∈ ℕ0)
17 ovexd 7425 . 2 (𝜑 → ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V)
1810, 15, 16, 17fvmptd 6978 1 (𝜑 → ((𝐹𝐴)‘𝑀) = ((𝐶𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074   · cmul 11080  2c2 12248  0cn0 12449  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-n0 12450
This theorem is referenced by:  knoppcnlem3  36490  knoppcnlem4  36491  knoppcnlem10  36497  knoppndvlem6  36512  knoppndvlem7  36513  knoppndvlem11  36517
  Copyright terms: Public domain W3C validator