Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem1 | Structured version Visualization version GIF version |
Description: Lemma for knoppcn 34680. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
knoppcnlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppcnlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
knoppcnlem1.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Ref | Expression |
---|---|
knoppcnlem1 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem1.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
2 | oveq2 7279 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴)) | |
3 | 2 | fveq2d 6775 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) |
4 | 3 | oveq2d 7287 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) |
5 | 4 | mpteq2dv 5181 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
6 | knoppcnlem1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | nn0ex 12239 | . . . . 5 ⊢ ℕ0 ∈ V | |
8 | 7 | mptex 7096 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V) |
10 | 1, 5, 6, 9 | fvmptd3 6895 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
11 | oveq2 7279 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝐶↑𝑛) = (𝐶↑𝑀)) | |
12 | oveq2 7279 | . . . . 5 ⊢ (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀)) | |
13 | 12 | fvoveq1d 7293 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) |
14 | 11, 13 | oveq12d 7289 | . . 3 ⊢ (𝑛 = 𝑀 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
15 | 14 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑀) → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
16 | knoppcnlem1.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
17 | ovexd 7306 | . 2 ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V) | |
18 | 10, 15, 16, 17 | fvmptd 6879 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 · cmul 10877 2c2 12028 ℕ0cn0 12233 ↑cexp 13780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-1cn 10930 ax-addcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-n0 12234 |
This theorem is referenced by: knoppcnlem3 34671 knoppcnlem4 34672 knoppcnlem10 34678 knoppndvlem6 34693 knoppndvlem7 34694 knoppndvlem11 34698 |
Copyright terms: Public domain | W3C validator |