| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36499. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| knoppcnlem1.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| knoppcnlem1 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppcnlem1.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 2 | oveq2 7398 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴)) | |
| 3 | 2 | fveq2d 6865 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) |
| 4 | 3 | oveq2d 7406 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) |
| 5 | 4 | mpteq2dv 5204 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
| 6 | knoppcnlem1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | nn0ex 12455 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 8 | 7 | mptex 7200 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V) |
| 10 | 1, 5, 6, 9 | fvmptd3 6994 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
| 11 | oveq2 7398 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝐶↑𝑛) = (𝐶↑𝑀)) | |
| 12 | oveq2 7398 | . . . . 5 ⊢ (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀)) | |
| 13 | 12 | fvoveq1d 7412 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) |
| 14 | 11, 13 | oveq12d 7408 | . . 3 ⊢ (𝑛 = 𝑀 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑀) → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| 16 | knoppcnlem1.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 17 | ovexd 7425 | . 2 ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V) | |
| 18 | 10, 15, 16, 17 | fvmptd 6978 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 · cmul 11080 2c2 12248 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-n0 12450 |
| This theorem is referenced by: knoppcnlem3 36490 knoppcnlem4 36491 knoppcnlem10 36497 knoppndvlem6 36512 knoppndvlem7 36513 knoppndvlem11 36517 |
| Copyright terms: Public domain | W3C validator |