![]() |
Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem1 | Structured version Visualization version GIF version |
Description: Lemma for knoppcn 35902. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
Ref | Expression |
---|---|
knoppcnlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppcnlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
knoppcnlem1.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Ref | Expression |
---|---|
knoppcnlem1 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem1.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
2 | oveq2 7422 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴)) | |
3 | 2 | fveq2d 6895 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) |
4 | 3 | oveq2d 7430 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) |
5 | 4 | mpteq2dv 5244 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
6 | knoppcnlem1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
7 | nn0ex 12494 | . . . . 5 ⊢ ℕ0 ∈ V | |
8 | 7 | mptex 7229 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V) |
10 | 1, 5, 6, 9 | fvmptd3 7022 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
11 | oveq2 7422 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝐶↑𝑛) = (𝐶↑𝑀)) | |
12 | oveq2 7422 | . . . . 5 ⊢ (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀)) | |
13 | 12 | fvoveq1d 7436 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) |
14 | 11, 13 | oveq12d 7432 | . . 3 ⊢ (𝑛 = 𝑀 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑀) → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
16 | knoppcnlem1.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
17 | ovexd 7449 | . 2 ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V) | |
18 | 10, 15, 16, 17 | fvmptd 7006 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ℝcr 11123 · cmul 11129 2c2 12283 ℕ0cn0 12488 ↑cexp 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-1cn 11182 ax-addcl 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-nn 12229 df-n0 12489 |
This theorem is referenced by: knoppcnlem3 35893 knoppcnlem4 35894 knoppcnlem10 35900 knoppndvlem6 35915 knoppndvlem7 35916 knoppndvlem11 35920 |
Copyright terms: Public domain | W3C validator |