| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36527. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| knoppcnlem1.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| knoppcnlem1 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppcnlem1.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 2 | oveq2 7418 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴)) | |
| 3 | 2 | fveq2d 6885 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) |
| 4 | 3 | oveq2d 7426 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) |
| 5 | 4 | mpteq2dv 5220 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
| 6 | knoppcnlem1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | nn0ex 12512 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 8 | 7 | mptex 7220 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V) |
| 10 | 1, 5, 6, 9 | fvmptd3 7014 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
| 11 | oveq2 7418 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝐶↑𝑛) = (𝐶↑𝑀)) | |
| 12 | oveq2 7418 | . . . . 5 ⊢ (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀)) | |
| 13 | 12 | fvoveq1d 7432 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) |
| 14 | 11, 13 | oveq12d 7428 | . . 3 ⊢ (𝑛 = 𝑀 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑀) → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| 16 | knoppcnlem1.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 17 | ovexd 7445 | . 2 ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V) | |
| 18 | 10, 15, 16, 17 | fvmptd 6998 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ℝcr 11133 · cmul 11139 2c2 12300 ℕ0cn0 12506 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-1cn 11192 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: knoppcnlem3 36518 knoppcnlem4 36519 knoppcnlem10 36525 knoppndvlem6 36540 knoppndvlem7 36541 knoppndvlem11 36545 |
| Copyright terms: Public domain | W3C validator |