| Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for knoppcn 36538. (Contributed by Asger C. Ipsen, 4-Apr-2021.) |
| Ref | Expression |
|---|---|
| knoppcnlem1.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
| knoppcnlem1.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| knoppcnlem1.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| knoppcnlem1 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | knoppcnlem1.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
| 2 | oveq2 7349 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (((2 · 𝑁)↑𝑛) · 𝑦) = (((2 · 𝑁)↑𝑛) · 𝐴)) | |
| 3 | 2 | fveq2d 6821 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)) = (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) |
| 4 | 3 | oveq2d 7357 | . . . 4 ⊢ (𝑦 = 𝐴 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))) = ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) |
| 5 | 4 | mpteq2dv 5180 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
| 6 | knoppcnlem1.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 7 | nn0ex 12382 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 8 | 7 | mptex 7152 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)))) ∈ V) |
| 10 | 1, 5, 6, 9 | fvmptd3 6947 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) = (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))))) |
| 11 | oveq2 7349 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝐶↑𝑛) = (𝐶↑𝑀)) | |
| 12 | oveq2 7349 | . . . . 5 ⊢ (𝑛 = 𝑀 → ((2 · 𝑁)↑𝑛) = ((2 · 𝑁)↑𝑀)) | |
| 13 | 12 | fvoveq1d 7363 | . . . 4 ⊢ (𝑛 = 𝑀 → (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴)) = (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) |
| 14 | 11, 13 | oveq12d 7359 | . . 3 ⊢ (𝑛 = 𝑀 → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑛 = 𝑀) → ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝐴))) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| 16 | knoppcnlem1.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
| 17 | ovexd 7376 | . 2 ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ V) | |
| 18 | 10, 15, 16, 17 | fvmptd 6931 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 · cmul 11006 2c2 12175 ℕ0cn0 12376 ↑cexp 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-n0 12377 |
| This theorem is referenced by: knoppcnlem3 36529 knoppcnlem4 36530 knoppcnlem10 36536 knoppndvlem6 36551 knoppndvlem7 36552 knoppndvlem11 36556 |
| Copyright terms: Public domain | W3C validator |