Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem11 Structured version   Visualization version   GIF version

Theorem knoppndvlem11 36523
Description: Lemma for knoppndv 36535. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem11.a (𝜑𝐴 ∈ ℝ)
knoppndvlem11.b (𝜑𝐵 ∈ ℝ)
knoppndvlem11.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem11.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem11.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem11 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑖)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑁(𝑖)

Proof of Theorem knoppndvlem11
StepHypRef Expression
1 fzfid 14014 . . . . 5 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
2 knoppndvlem11.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
3 knoppndvlem11.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
4 knoppndvlem11.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑁 ∈ ℕ)
6 knoppndvlem11.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 36515 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 494 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℝ)
10 knoppndvlem11.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℝ)
12 elfznn0 13660 . . . . . . . 8 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
1312adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
142, 3, 5, 9, 11, 13knoppcnlem3 36496 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℝ)
1514recnd 11289 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℂ)
16 knoppndvlem11.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1716adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℝ)
182, 3, 5, 9, 17, 13knoppcnlem3 36496 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
1918recnd 11289 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
201, 15, 19fsumsub 15824 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))
2120eqcomd 2743 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)))
2221fveq2d 6910 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) = (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
2315, 19subcld 11620 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
241, 23fsumcl 15769 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
2524abscld 15475 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2623abscld 15475 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
271, 26fsumrecl 15770 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2810, 16resubcld 11691 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
2928recnd 11289 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029abscld 15475 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
31 2re 12340 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
33 nnre 12273 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
344, 33syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3532, 34remulcld 11291 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
368recnd 11289 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
3736abscld 15475 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℝ)
3835, 37remulcld 11291 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3938adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
4039, 13reexpcld 14203 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
411, 40fsumrecl 15770 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4230, 41remulcld 11291 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
431, 23fsumabs 15837 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
4430adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℝ)
4544, 40remulcld 11291 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
463, 11, 13knoppcnlem1 36494 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))))
473, 17, 13knoppcnlem1 36494 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
4846, 47oveq12d 7449 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
499, 13reexpcld 14203 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℝ)
5049recnd 11289 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℂ)
5135adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℝ)
5251, 13reexpcld 14203 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℝ)
5352, 11remulcld 11291 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐵) ∈ ℝ)
542, 53dnicld2 36474 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℝ)
5554recnd 11289 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℂ)
5652, 17remulcld 11291 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℝ)
572, 56dnicld2 36474 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
5857recnd 11289 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
5950, 55, 58subdid 11719 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6059eqcomd 2743 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6148, 60eqtrd 2777 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6261fveq2d 6910 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6355, 58subcld 11620 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℂ)
6450, 63absmuld 15493 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6536adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℂ)
6665, 13absexpd 15491 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐶𝑖)) = ((abs‘𝐶)↑𝑖))
6766oveq1d 7446 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6864, 67eqtrd 2777 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6962, 68eqtrd 2777 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
7063abscld 15475 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ∈ ℝ)
7153, 56resubcld 11691 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
7271recnd 11289 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
7372abscld 15475 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℝ)
7437adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℝ)
7574, 13reexpcld 14203 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℝ)
7665absge0d 15483 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ (abs‘𝐶))
7774, 13, 76expge0d 14204 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ ((abs‘𝐶)↑𝑖))
782, 56, 53dnibnd 36492 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ≤ (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))))
7970, 73, 75, 77, 78lemul2ad 12208 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))))
8052recnd 11289 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℂ)
8111recnd 11289 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℂ)
8217recnd 11289 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℂ)
8380, 81, 82subdid 11719 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · (𝐵𝐴)) = ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))
8483eqcomd 2743 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) = (((2 · 𝑁)↑𝑖) · (𝐵𝐴)))
8584fveq2d 6910 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))))
8629adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐵𝐴) ∈ ℂ)
8780, 86absmuld 15493 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
8851recnd 11289 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℂ)
8988, 13absexpd 15491 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((abs‘(2 · 𝑁))↑𝑖))
9032recnd 11289 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
9134recnd 11289 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
9290, 91absmuld 15493 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 12368 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
9431absidi 15416 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 2 → (abs‘2) = 2)
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . 18 (abs‘2) = 2
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘2) = 2)
97 0red 11264 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
98 1red 11262 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
99 0le1 11786 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 1)
101 nnge1 12294 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1024, 101syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ≤ 𝑁)
10397, 98, 34, 100, 102letrd 11418 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑁)
10434, 103absidd 15461 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝑁) = 𝑁)
10596, 104oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10692, 105eqtrd 2777 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
107106oveq1d 7446 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
108107adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
10989, 108eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((2 · 𝑁)↑𝑖))
110109oveq1d 7446 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11187, 110eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11285, 111eqtrd 2777 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
113112oveq2d 7447 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
11475recnd 11289 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℂ)
11544recnd 11289 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℂ)
116114, 80, 115mulassd 11284 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
117116eqcomd 2743 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
118114, 80mulcld 11281 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) ∈ ℂ)
119118, 115mulcomd 11282 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))))
120114, 80mulcomd 11282 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
12174recnd 11289 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℂ)
12288, 121, 13mulexpd 14201 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
123122eqcomd 2743 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
124120, 123eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
125124oveq2d 7447 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
126117, 119, 1253eqtrd 2781 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
127113, 126eqtrd 2777 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12879, 127breqtrd 5169 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12969, 128eqbrtrd 5165 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
1301, 26, 45, 129fsumle 15835 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13130recnd 11289 . . . . . 6 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
132124, 118eqeltrrd 2842 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℂ)
1331, 131, 132fsummulc2 15820 . . . . 5 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
134133eqcomd 2743 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
135130, 134breqtrd 5169 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13625, 27, 42, 43, 135letrd 11418 . 2 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13722, 136eqbrtrd 5165 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  (,)cioo 13387  ...cfz 13547  cfl 13830  cexp 14102  abscabs 15273  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ioo 13391  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  knoppndvlem14  36526
  Copyright terms: Public domain W3C validator