Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem11 Structured version   Visualization version   GIF version

Theorem knoppndvlem11 36483
Description: Lemma for knoppndv 36495. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem11.a (𝜑𝐴 ∈ ℝ)
knoppndvlem11.b (𝜑𝐵 ∈ ℝ)
knoppndvlem11.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem11.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem11.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem11 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑖)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑁(𝑖)

Proof of Theorem knoppndvlem11
StepHypRef Expression
1 fzfid 13914 . . . . 5 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
2 knoppndvlem11.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
3 knoppndvlem11.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
4 knoppndvlem11.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑁 ∈ ℕ)
6 knoppndvlem11.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 36475 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 494 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
98adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℝ)
10 knoppndvlem11.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1110adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℝ)
12 elfznn0 13557 . . . . . . . 8 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
1312adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
142, 3, 5, 9, 11, 13knoppcnlem3 36456 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℝ)
1514recnd 11178 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℂ)
16 knoppndvlem11.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1716adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℝ)
182, 3, 5, 9, 17, 13knoppcnlem3 36456 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
1918recnd 11178 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
201, 15, 19fsumsub 15730 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))
2120eqcomd 2735 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)))
2221fveq2d 6844 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) = (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
2315, 19subcld 11509 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
241, 23fsumcl 15675 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
2524abscld 15381 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2623abscld 15381 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
271, 26fsumrecl 15676 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2810, 16resubcld 11582 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
2928recnd 11178 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029abscld 15381 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
31 2re 12236 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
33 nnre 12169 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
344, 33syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3532, 34remulcld 11180 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
368recnd 11178 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
3736abscld 15381 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℝ)
3835, 37remulcld 11180 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3938adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
4039, 13reexpcld 14104 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
411, 40fsumrecl 15676 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4230, 41remulcld 11180 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
431, 23fsumabs 15743 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
4430adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℝ)
4544, 40remulcld 11180 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
463, 11, 13knoppcnlem1 36454 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))))
473, 17, 13knoppcnlem1 36454 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
4846, 47oveq12d 7387 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
499, 13reexpcld 14104 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℝ)
5049recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℂ)
5135adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℝ)
5251, 13reexpcld 14104 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℝ)
5352, 11remulcld 11180 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐵) ∈ ℝ)
542, 53dnicld2 36434 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℝ)
5554recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℂ)
5652, 17remulcld 11180 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℝ)
572, 56dnicld2 36434 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
5857recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
5950, 55, 58subdid 11610 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6059eqcomd 2735 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6148, 60eqtrd 2764 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6261fveq2d 6844 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6355, 58subcld 11509 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℂ)
6450, 63absmuld 15399 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6536adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℂ)
6665, 13absexpd 15397 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐶𝑖)) = ((abs‘𝐶)↑𝑖))
6766oveq1d 7384 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6864, 67eqtrd 2764 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6962, 68eqtrd 2764 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
7063abscld 15381 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ∈ ℝ)
7153, 56resubcld 11582 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
7271recnd 11178 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
7372abscld 15381 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℝ)
7437adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℝ)
7574, 13reexpcld 14104 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℝ)
7665absge0d 15389 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ (abs‘𝐶))
7774, 13, 76expge0d 14105 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ ((abs‘𝐶)↑𝑖))
782, 56, 53dnibnd 36452 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ≤ (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))))
7970, 73, 75, 77, 78lemul2ad 12099 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))))
8052recnd 11178 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℂ)
8111recnd 11178 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℂ)
8217recnd 11178 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℂ)
8380, 81, 82subdid 11610 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · (𝐵𝐴)) = ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))
8483eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) = (((2 · 𝑁)↑𝑖) · (𝐵𝐴)))
8584fveq2d 6844 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))))
8629adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐵𝐴) ∈ ℂ)
8780, 86absmuld 15399 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
8851recnd 11178 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℂ)
8988, 13absexpd 15397 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((abs‘(2 · 𝑁))↑𝑖))
9032recnd 11178 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
9134recnd 11178 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
9290, 91absmuld 15399 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 12264 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
9431absidi 15320 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 2 → (abs‘2) = 2)
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . 18 (abs‘2) = 2
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘2) = 2)
97 0red 11153 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
98 1red 11151 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
99 0le1 11677 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 1)
101 nnge1 12190 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1024, 101syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ≤ 𝑁)
10397, 98, 34, 100, 102letrd 11307 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑁)
10434, 103absidd 15365 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝑁) = 𝑁)
10596, 104oveq12d 7387 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10692, 105eqtrd 2764 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
107106oveq1d 7384 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
108107adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
10989, 108eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((2 · 𝑁)↑𝑖))
110109oveq1d 7384 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11187, 110eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11285, 111eqtrd 2764 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
113112oveq2d 7385 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
11475recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℂ)
11544recnd 11178 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℂ)
116114, 80, 115mulassd 11173 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
117116eqcomd 2735 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
118114, 80mulcld 11170 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) ∈ ℂ)
119118, 115mulcomd 11171 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))))
120114, 80mulcomd 11171 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
12174recnd 11178 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℂ)
12288, 121, 13mulexpd 14102 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
123122eqcomd 2735 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
124120, 123eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
125124oveq2d 7385 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
126117, 119, 1253eqtrd 2768 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
127113, 126eqtrd 2764 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12879, 127breqtrd 5128 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12969, 128eqbrtrd 5124 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
1301, 26, 45, 129fsumle 15741 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13130recnd 11178 . . . . . 6 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
132124, 118eqeltrrd 2829 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℂ)
1331, 131, 132fsummulc2 15726 . . . . 5 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
134133eqcomd 2735 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
135130, 134breqtrd 5128 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13625, 27, 42, 43, 135letrd 11307 . 2 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13722, 136eqbrtrd 5124 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  (,)cioo 13282  ...cfz 13444  cfl 13728  cexp 14002  abscabs 15176  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ioo 13286  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by:  knoppndvlem14  36486
  Copyright terms: Public domain W3C validator