Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem11 Structured version   Visualization version   GIF version

Theorem knoppndvlem11 33013
Description: Lemma for knoppndv 33025. (Contributed by Asger C. Ipsen, 28-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem11.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem11.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem11.a (𝜑𝐴 ∈ ℝ)
knoppndvlem11.b (𝜑𝐵 ∈ ℝ)
knoppndvlem11.c (𝜑𝐶 ∈ (-1(,)1))
knoppndvlem11.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem11.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem11 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Distinct variable groups:   𝐴,𝑖,𝑛,𝑦   𝑥,𝐴,𝑖   𝐵,𝑖,𝑛,𝑦   𝑥,𝐵   𝐶,𝑛,𝑦   𝑖,𝐽,𝑛,𝑦   𝑛,𝑁,𝑦   𝑥,𝑁   𝑇,𝑛,𝑦   𝜑,𝑖,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥,𝑖)   𝑇(𝑥,𝑖)   𝐹(𝑥,𝑦,𝑖,𝑛)   𝐽(𝑥)   𝑁(𝑖)

Proof of Theorem knoppndvlem11
StepHypRef Expression
1 fzfid 13023 . . . . 5 (𝜑 → (0...(𝐽 − 1)) ∈ Fin)
2 knoppndvlem11.t . . . . . . 7 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
3 knoppndvlem11.f . . . . . . 7 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
4 knoppndvlem11.n . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
54adantr 473 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑁 ∈ ℕ)
6 knoppndvlem11.c . . . . . . . . . 10 (𝜑𝐶 ∈ (-1(,)1))
76knoppndvlem3 33005 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ (abs‘𝐶) < 1))
87simpld 489 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
98adantr 473 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℝ)
10 knoppndvlem11.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1110adantr 473 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℝ)
12 elfznn0 12683 . . . . . . . 8 (𝑖 ∈ (0...(𝐽 − 1)) → 𝑖 ∈ ℕ0)
1312adantl 474 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝑖 ∈ ℕ0)
142, 3, 5, 9, 11, 13knoppcnlem3 32985 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℝ)
1514recnd 10355 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) ∈ ℂ)
16 knoppndvlem11.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1716adantr 473 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℝ)
182, 3, 5, 9, 17, 13knoppcnlem3 32985 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℝ)
1918recnd 10355 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) ∈ ℂ)
201, 15, 19fsumsub 14855 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)))
2120eqcomd 2803 . . 3 (𝜑 → (Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)))
2221fveq2d 6413 . 2 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) = (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
2315, 19subcld 10682 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
241, 23fsumcl 14802 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) ∈ ℂ)
2524abscld 14513 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2623abscld 14513 . . . 4 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
271, 26fsumrecl 14803 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ∈ ℝ)
2810, 16resubcld 10748 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℝ)
2928recnd 10355 . . . . 5 (𝜑 → (𝐵𝐴) ∈ ℂ)
3029abscld 14513 . . . 4 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℝ)
31 2re 11383 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝜑 → 2 ∈ ℝ)
33 nnre 11318 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
344, 33syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
3532, 34remulcld 10357 . . . . . . . 8 (𝜑 → (2 · 𝑁) ∈ ℝ)
368recnd 10355 . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
3736abscld 14513 . . . . . . . 8 (𝜑 → (abs‘𝐶) ∈ ℝ)
3835, 37remulcld 10357 . . . . . . 7 (𝜑 → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
3938adantr 473 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁) · (abs‘𝐶)) ∈ ℝ)
4039, 13reexpcld 13275 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
411, 40fsumrecl 14803 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℝ)
4230, 41remulcld 10357 . . 3 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
431, 23fsumabs 14868 . . 3 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))))
4430adantr 473 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℝ)
4544, 40remulcld 10357 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) ∈ ℝ)
463, 11, 13knoppcnlem1 32983 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐵)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))))
473, 17, 13knoppcnlem1 32983 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐹𝐴)‘𝑖) = ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))
4846, 47oveq12d 6894 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
499, 13reexpcld 13275 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℝ)
5049recnd 10355 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐶𝑖) ∈ ℂ)
5135adantr 473 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℝ)
5251, 13reexpcld 13275 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℝ)
5352, 11remulcld 10357 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐵) ∈ ℝ)
542, 53dnicld2 32963 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℝ)
5554recnd 10355 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) ∈ ℂ)
5652, 17remulcld 10357 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · 𝐴) ∈ ℝ)
572, 56dnicld2 32963 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
5857recnd 10355 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
5950, 55, 58subdid 10776 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6059eqcomd 2803 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵))) − ((𝐶𝑖) · (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6148, 60eqtrd 2831 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖)) = ((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))))
6261fveq2d 6413 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6355, 58subcld 10682 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℂ)
6450, 63absmuld 14531 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6536adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐶 ∈ ℂ)
6665, 13absexpd 14529 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐶𝑖)) = ((abs‘𝐶)↑𝑖))
6766oveq1d 6891 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐶𝑖)) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6864, 67eqtrd 2831 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝐶𝑖) · ((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
6962, 68eqtrd 2831 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) = (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))))
7063abscld 14513 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ∈ ℝ)
7153, 56resubcld 10748 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℝ)
7271recnd 10355 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) ∈ ℂ)
7372abscld 14513 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) ∈ ℝ)
7437adantr 473 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℝ)
7574, 13reexpcld 13275 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℝ)
7665absge0d 14521 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ (abs‘𝐶))
7774, 13, 76expge0d 13276 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 0 ≤ ((abs‘𝐶)↑𝑖))
782, 56, 53dnibnd 32981 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴)))) ≤ (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))))
7970, 73, 75, 77, 78lemul2ad 11254 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))))
8052recnd 10355 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((2 · 𝑁)↑𝑖) ∈ ℂ)
8111recnd 10355 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐵 ∈ ℂ)
8217recnd 10355 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → 𝐴 ∈ ℂ)
8380, 81, 82subdid 10776 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · (𝐵𝐴)) = ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))
8483eqcomd 2803 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)) = (((2 · 𝑁)↑𝑖) · (𝐵𝐴)))
8584fveq2d 6413 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))))
8629adantr 473 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (𝐵𝐴) ∈ ℂ)
8780, 86absmuld 14531 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
8851recnd 10355 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (2 · 𝑁) ∈ ℂ)
8988, 13absexpd 14529 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((abs‘(2 · 𝑁))↑𝑖))
9032recnd 10355 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
9134recnd 10355 . . . . . . . . . . . . . . . . 17 (𝜑𝑁 ∈ ℂ)
9290, 91absmuld 14531 . . . . . . . . . . . . . . . 16 (𝜑 → (abs‘(2 · 𝑁)) = ((abs‘2) · (abs‘𝑁)))
93 0le2 11418 . . . . . . . . . . . . . . . . . . 19 0 ≤ 2
9431absidi 14455 . . . . . . . . . . . . . . . . . . 19 (0 ≤ 2 → (abs‘2) = 2)
9593, 94ax-mp 5 . . . . . . . . . . . . . . . . . 18 (abs‘2) = 2
9695a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘2) = 2)
97 0red 10330 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ∈ ℝ)
98 1red 10327 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ∈ ℝ)
99 0le1 10841 . . . . . . . . . . . . . . . . . . . 20 0 ≤ 1
10099a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ 1)
101 nnge1 11340 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
1024, 101syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 1 ≤ 𝑁)
10397, 98, 34, 100, 102letrd 10482 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑁)
10434, 103absidd 14499 . . . . . . . . . . . . . . . . 17 (𝜑 → (abs‘𝑁) = 𝑁)
10596, 104oveq12d 6894 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘2) · (abs‘𝑁)) = (2 · 𝑁))
10692, 105eqtrd 2831 . . . . . . . . . . . . . . 15 (𝜑 → (abs‘(2 · 𝑁)) = (2 · 𝑁))
107106oveq1d 6891 . . . . . . . . . . . . . 14 (𝜑 → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
108107adantr 473 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(2 · 𝑁))↑𝑖) = ((2 · 𝑁)↑𝑖))
10989, 108eqtrd 2831 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((2 · 𝑁)↑𝑖)) = ((2 · 𝑁)↑𝑖))
110109oveq1d 6891 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11187, 110eqtrd 2831 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((2 · 𝑁)↑𝑖) · (𝐵𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
11285, 111eqtrd 2831 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴))) = (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴))))
113112oveq2d 6892 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
11475recnd 10355 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘𝐶)↑𝑖) ∈ ℂ)
11544recnd 10355 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(𝐵𝐴)) ∈ ℂ)
116114, 80, 115mulassd 10350 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))))
117116eqcomd 2803 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))))
118114, 80mulcld 10347 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) ∈ ℂ)
119118, 115mulcomd 10348 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) · (abs‘(𝐵𝐴))) = ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))))
120114, 80mulcomd 10348 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
12174recnd 10355 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘𝐶) ∈ ℂ)
12288, 121, 13mulexpd 13273 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) = (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)))
123122eqcomd 2803 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁)↑𝑖) · ((abs‘𝐶)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
124120, 123eqtrd 2831 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖)) = (((2 · 𝑁) · (abs‘𝐶))↑𝑖))
125124oveq2d 6892 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → ((abs‘(𝐵𝐴)) · (((abs‘𝐶)↑𝑖) · ((2 · 𝑁)↑𝑖))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
126117, 119, 1253eqtrd 2835 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (((2 · 𝑁)↑𝑖) · (abs‘(𝐵𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
127113, 126eqtrd 2831 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((((2 · 𝑁)↑𝑖) · 𝐵) − (((2 · 𝑁)↑𝑖) · 𝐴)))) = ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12879, 127breqtrd 4867 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((abs‘𝐶)↑𝑖) · (abs‘((𝑇‘(((2 · 𝑁)↑𝑖) · 𝐵)) − (𝑇‘(((2 · 𝑁)↑𝑖) · 𝐴))))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
12969, 128eqbrtrd 4863 . . . . 5 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
1301, 26, 45, 129fsumle 14866 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13130recnd 10355 . . . . . 6 (𝜑 → (abs‘(𝐵𝐴)) ∈ ℂ)
132124, 118eqeltrrd 2877 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝐽 − 1))) → (((2 · 𝑁) · (abs‘𝐶))↑𝑖) ∈ ℂ)
1331, 131, 132fsummulc2 14851 . . . . 5 (𝜑 → ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
134133eqcomd 2803 . . . 4 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))((abs‘(𝐵𝐴)) · (((2 · 𝑁) · (abs‘𝐶))↑𝑖)) = ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
135130, 134breqtrd 4867 . . 3 (𝜑 → Σ𝑖 ∈ (0...(𝐽 − 1))(abs‘(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13625, 27, 42, 43, 135letrd 10482 . 2 (𝜑 → (abs‘Σ𝑖 ∈ (0...(𝐽 − 1))(((𝐹𝐵)‘𝑖) − ((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
13722, 136eqbrtrd 4863 1 (𝜑 → (abs‘(Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐵)‘𝑖) − Σ𝑖 ∈ (0...(𝐽 − 1))((𝐹𝐴)‘𝑖))) ≤ ((abs‘(𝐵𝐴)) · Σ𝑖 ∈ (0...(𝐽 − 1))(((2 · 𝑁) · (abs‘𝐶))↑𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157   class class class wbr 4841  cmpt 4920  cfv 6099  (class class class)co 6876  cc 10220  cr 10221  0cc0 10222  1c1 10223   + caddc 10225   · cmul 10227   < clt 10361  cle 10362  cmin 10554  -cneg 10555   / cdiv 10974  cn 11310  2c2 11364  0cn0 11576  (,)cioo 12420  ...cfz 12576  cfl 12842  cexp 13110  abscabs 14312  Σcsu 14754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-z 11663  df-uz 11927  df-rp 12071  df-ioo 12424  df-ico 12426  df-fz 12577  df-fzo 12717  df-fl 12844  df-seq 13052  df-exp 13111  df-hash 13367  df-cj 14177  df-re 14178  df-im 14179  df-sqrt 14313  df-abs 14314  df-clim 14557  df-sum 14755
This theorem is referenced by:  knoppndvlem14  33016
  Copyright terms: Public domain W3C validator