Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem7 Structured version   Visualization version   GIF version

Theorem knoppndvlem7 34698
Description: Lemma for knoppndv 34714. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem7.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem7.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem7.m (𝜑𝑀 ∈ ℤ)
knoppndvlem7.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem7 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem7
StepHypRef Expression
1 knoppndvlem7.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppndvlem7.a . . . . 5 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
32a1i 11 . . . 4 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4 knoppndvlem7.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 knoppndvlem7.j . . . . . 6 (𝜑𝐽 ∈ ℕ0)
65nn0zd 12424 . . . . 5 (𝜑𝐽 ∈ ℤ)
7 knoppndvlem7.m . . . . 5 (𝜑𝑀 ∈ ℤ)
84, 6, 7knoppndvlem1 34692 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
93, 8eqeltrd 2839 . . 3 (𝜑𝐴 ∈ ℝ)
101, 9, 5knoppcnlem1 34673 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))))
112oveq2i 7286 . . . . . 6 (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
1211a1i 11 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
13 2cnd 12051 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
14 nnz 12342 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
154, 14syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615zcnd 12427 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1713, 16mulcld 10995 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
1817, 5expcld 13864 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
19 2ne0 12077 . . . . . . . . . . . 12 2 ≠ 0
2019a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≠ 0)
21 0red 10978 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
22 1red 10976 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
2315zred 12426 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
24 0lt1 11497 . . . . . . . . . . . . . . 15 0 < 1
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
26 nnge1 12001 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
274, 26syl 17 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑁)
2821, 22, 23, 25, 27ltletrd 11135 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
2921, 28ltned 11111 . . . . . . . . . . . 12 (𝜑 → 0 ≠ 𝑁)
3029necomd 2999 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
3113, 16, 20, 30mulne0d 11627 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≠ 0)
326znegcld 12428 . . . . . . . . . 10 (𝜑 → -𝐽 ∈ ℤ)
3317, 31, 32expclzd 13869 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
3433, 13, 20divcld 11751 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
357zcnd 12427 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3618, 34, 35mulassd 10998 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
3736eqcomd 2744 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3818, 33, 13, 20divassd 11786 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)))
3938eqcomd 2744 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2))
4017, 31, 6expnegd 13871 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
4140oveq2d 7291 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))))
4217, 31, 6expne0d 13870 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
4318, 42recidd 11746 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))) = 1)
4441, 43eqtrd 2778 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = 1)
4544oveq1d 7290 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (1 / 2))
4639, 45eqtrd 2778 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = (1 / 2))
4746oveq1d 7290 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((1 / 2) · 𝑀))
4835, 13, 20divrec2d 11755 . . . . . . 7 (𝜑 → (𝑀 / 2) = ((1 / 2) · 𝑀))
4948eqcomd 2744 . . . . . 6 (𝜑 → ((1 / 2) · 𝑀) = (𝑀 / 2))
5037, 47, 493eqtrd 2782 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (𝑀 / 2))
5112, 50eqtrd 2778 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (𝑀 / 2))
5251fveq2d 6778 . . 3 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴)) = (𝑇‘(𝑀 / 2)))
5352oveq2d 7291 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
5410, 53eqtrd 2778 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cfl 13510  cexp 13782  abscabs 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  knoppndvlem8  34699  knoppndvlem9  34700
  Copyright terms: Public domain W3C validator