Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem7 Structured version   Visualization version   GIF version

Theorem knoppndvlem7 34981
Description: Lemma for knoppndv 34997. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem7.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem7.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem7.m (𝜑𝑀 ∈ ℤ)
knoppndvlem7.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem7 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem7
StepHypRef Expression
1 knoppndvlem7.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppndvlem7.a . . . . 5 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
32a1i 11 . . . 4 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4 knoppndvlem7.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 knoppndvlem7.j . . . . . 6 (𝜑𝐽 ∈ ℕ0)
65nn0zd 12525 . . . . 5 (𝜑𝐽 ∈ ℤ)
7 knoppndvlem7.m . . . . 5 (𝜑𝑀 ∈ ℤ)
84, 6, 7knoppndvlem1 34975 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
93, 8eqeltrd 2838 . . 3 (𝜑𝐴 ∈ ℝ)
101, 9, 5knoppcnlem1 34956 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))))
112oveq2i 7368 . . . . . 6 (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
1211a1i 11 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
13 2cnd 12231 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
14 nnz 12520 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
154, 14syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615zcnd 12608 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1713, 16mulcld 11175 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
1817, 5expcld 14051 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
19 2ne0 12257 . . . . . . . . . . . 12 2 ≠ 0
2019a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≠ 0)
21 0red 11158 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
22 1red 11156 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
2315zred 12607 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
24 0lt1 11677 . . . . . . . . . . . . . . 15 0 < 1
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
26 nnge1 12181 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
274, 26syl 17 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑁)
2821, 22, 23, 25, 27ltletrd 11315 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
2921, 28ltned 11291 . . . . . . . . . . . 12 (𝜑 → 0 ≠ 𝑁)
3029necomd 2999 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
3113, 16, 20, 30mulne0d 11807 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≠ 0)
326znegcld 12609 . . . . . . . . . 10 (𝜑 → -𝐽 ∈ ℤ)
3317, 31, 32expclzd 14056 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
3433, 13, 20divcld 11931 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
357zcnd 12608 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3618, 34, 35mulassd 11178 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
3736eqcomd 2742 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3818, 33, 13, 20divassd 11966 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)))
3938eqcomd 2742 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2))
4017, 31, 6expnegd 14058 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
4140oveq2d 7373 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))))
4217, 31, 6expne0d 14057 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
4318, 42recidd 11926 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))) = 1)
4441, 43eqtrd 2776 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = 1)
4544oveq1d 7372 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (1 / 2))
4639, 45eqtrd 2776 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = (1 / 2))
4746oveq1d 7372 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((1 / 2) · 𝑀))
4835, 13, 20divrec2d 11935 . . . . . . 7 (𝜑 → (𝑀 / 2) = ((1 / 2) · 𝑀))
4948eqcomd 2742 . . . . . 6 (𝜑 → ((1 / 2) · 𝑀) = (𝑀 / 2))
5037, 47, 493eqtrd 2780 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (𝑀 / 2))
5112, 50eqtrd 2776 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (𝑀 / 2))
5251fveq2d 6846 . . 3 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴)) = (𝑇‘(𝑀 / 2)))
5352oveq2d 7373 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
5410, 53eqtrd 2776 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cfl 13695  cexp 13967  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  knoppndvlem8  34982  knoppndvlem9  34983
  Copyright terms: Public domain W3C validator