Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  knoppndvlem7 Structured version   Visualization version   GIF version

Theorem knoppndvlem7 34232
Description: Lemma for knoppndv 34248. (Contributed by Asger C. Ipsen, 15-Jun-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
Hypotheses
Ref Expression
knoppndvlem7.t 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
knoppndvlem7.f 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
knoppndvlem7.a 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
knoppndvlem7.j (𝜑𝐽 ∈ ℕ0)
knoppndvlem7.m (𝜑𝑀 ∈ ℤ)
knoppndvlem7.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
knoppndvlem7 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Distinct variable groups:   𝐴,𝑛,𝑦   𝐶,𝑛,𝑦   𝑛,𝐽   𝑛,𝑁,𝑦   𝑇,𝑛,𝑦   𝜑,𝑛,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)   𝑇(𝑥)   𝐹(𝑥,𝑦,𝑛)   𝐽(𝑥,𝑦)   𝑀(𝑥,𝑦,𝑛)   𝑁(𝑥)

Proof of Theorem knoppndvlem7
StepHypRef Expression
1 knoppndvlem7.f . . 3 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦)))))
2 knoppndvlem7.a . . . . 5 𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)
32a1i 11 . . . 4 (𝜑𝐴 = ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
4 knoppndvlem7.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 knoppndvlem7.j . . . . . 6 (𝜑𝐽 ∈ ℕ0)
65nn0zd 12109 . . . . 5 (𝜑𝐽 ∈ ℤ)
7 knoppndvlem7.m . . . . 5 (𝜑𝑀 ∈ ℤ)
84, 6, 7knoppndvlem1 34226 . . . 4 (𝜑 → ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀) ∈ ℝ)
93, 8eqeltrd 2851 . . 3 (𝜑𝐴 ∈ ℝ)
101, 9, 5knoppcnlem1 34207 . 2 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))))
112oveq2i 7154 . . . . . 6 (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀))
1211a1i 11 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
13 2cnd 11737 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
14 nnz 12028 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
154, 14syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
1615zcnd 12112 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
1713, 16mulcld 10684 . . . . . . . . 9 (𝜑 → (2 · 𝑁) ∈ ℂ)
1817, 5expcld 13545 . . . . . . . 8 (𝜑 → ((2 · 𝑁)↑𝐽) ∈ ℂ)
19 2ne0 11763 . . . . . . . . . . . 12 2 ≠ 0
2019a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ≠ 0)
21 0red 10667 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
22 1red 10665 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℝ)
2315zred 12111 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℝ)
24 0lt1 11185 . . . . . . . . . . . . . . 15 0 < 1
2524a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 < 1)
26 nnge1 11687 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
274, 26syl 17 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ 𝑁)
2821, 22, 23, 25, 27ltletrd 10823 . . . . . . . . . . . . 13 (𝜑 → 0 < 𝑁)
2921, 28ltned 10799 . . . . . . . . . . . 12 (𝜑 → 0 ≠ 𝑁)
3029necomd 3004 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
3113, 16, 20, 30mulne0d 11315 . . . . . . . . . 10 (𝜑 → (2 · 𝑁) ≠ 0)
326znegcld 12113 . . . . . . . . . 10 (𝜑 → -𝐽 ∈ ℤ)
3317, 31, 32expclzd 13550 . . . . . . . . 9 (𝜑 → ((2 · 𝑁)↑-𝐽) ∈ ℂ)
3433, 13, 20divcld 11439 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑-𝐽) / 2) ∈ ℂ)
357zcnd 12112 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
3618, 34, 35mulassd 10687 . . . . . . 7 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)))
3736eqcomd 2765 . . . . . 6 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀))
3818, 33, 13, 20divassd 11474 . . . . . . . . 9 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)))
3938eqcomd 2765 . . . . . . . 8 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2))
4017, 31, 6expnegd 13552 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑-𝐽) = (1 / ((2 · 𝑁)↑𝐽)))
4140oveq2d 7159 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))))
4217, 31, 6expne0d 13551 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑁)↑𝐽) ≠ 0)
4318, 42recidd 11434 . . . . . . . . . 10 (𝜑 → (((2 · 𝑁)↑𝐽) · (1 / ((2 · 𝑁)↑𝐽))) = 1)
4441, 43eqtrd 2794 . . . . . . . . 9 (𝜑 → (((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) = 1)
4544oveq1d 7158 . . . . . . . 8 (𝜑 → ((((2 · 𝑁)↑𝐽) · ((2 · 𝑁)↑-𝐽)) / 2) = (1 / 2))
4639, 45eqtrd 2794 . . . . . . 7 (𝜑 → (((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) = (1 / 2))
4746oveq1d 7158 . . . . . 6 (𝜑 → ((((2 · 𝑁)↑𝐽) · (((2 · 𝑁)↑-𝐽) / 2)) · 𝑀) = ((1 / 2) · 𝑀))
4835, 13, 20divrec2d 11443 . . . . . . 7 (𝜑 → (𝑀 / 2) = ((1 / 2) · 𝑀))
4948eqcomd 2765 . . . . . 6 (𝜑 → ((1 / 2) · 𝑀) = (𝑀 / 2))
5037, 47, 493eqtrd 2798 . . . . 5 (𝜑 → (((2 · 𝑁)↑𝐽) · ((((2 · 𝑁)↑-𝐽) / 2) · 𝑀)) = (𝑀 / 2))
5112, 50eqtrd 2794 . . . 4 (𝜑 → (((2 · 𝑁)↑𝐽) · 𝐴) = (𝑀 / 2))
5251fveq2d 6655 . . 3 (𝜑 → (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴)) = (𝑇‘(𝑀 / 2)))
5352oveq2d 7159 . 2 (𝜑 → ((𝐶𝐽) · (𝑇‘(((2 · 𝑁)↑𝐽) · 𝐴))) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
5410, 53eqtrd 2794 1 (𝜑 → ((𝐹𝐴)‘𝐽) = ((𝐶𝐽) · (𝑇‘(𝑀 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  wne 2949   class class class wbr 5025  cmpt 5105  cfv 6328  (class class class)co 7143  cr 10559  0cc0 10560  1c1 10561   + caddc 10563   · cmul 10565   < clt 10698  cle 10699  cmin 10893  -cneg 10894   / cdiv 11320  cn 11659  2c2 11714  0cn0 11919  cz 12005  cfl 13194  cexp 13464  abscabs 14626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-n0 11920  df-z 12006  df-uz 12268  df-seq 13404  df-exp 13465
This theorem is referenced by:  knoppndvlem8  34233  knoppndvlem9  34234
  Copyright terms: Public domain W3C validator