Mathbox for Asger C. Ipsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > knoppcnlem3 | Structured version Visualization version GIF version |
Description: Lemma for knoppcn 34742. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.) |
Ref | Expression |
---|---|
knoppcnlem3.t | ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
knoppcnlem3.f | ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) |
knoppcnlem3.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
knoppcnlem3.1 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
knoppcnlem3.2 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
knoppcnlem3.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
Ref | Expression |
---|---|
knoppcnlem3 | ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | knoppcnlem3.f | . . 3 ⊢ 𝐹 = (𝑦 ∈ ℝ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐶↑𝑛) · (𝑇‘(((2 · 𝑁)↑𝑛) · 𝑦))))) | |
2 | knoppcnlem3.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | knoppcnlem3.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
4 | 1, 2, 3 | knoppcnlem1 34731 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) = ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴)))) |
5 | knoppcnlem3.t | . . 3 ⊢ 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) | |
6 | knoppcnlem3.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
7 | knoppcnlem3.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
8 | 5, 6, 7, 2, 3 | knoppcnlem2 34732 | . 2 ⊢ (𝜑 → ((𝐶↑𝑀) · (𝑇‘(((2 · 𝑁)↑𝑀) · 𝐴))) ∈ ℝ) |
9 | 4, 8 | eqeltrd 2838 | 1 ⊢ (𝜑 → ((𝐹‘𝐴)‘𝑀) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5170 ‘cfv 6465 (class class class)co 7315 ℝcr 10943 1c1 10945 + caddc 10947 · cmul 10949 − cmin 11278 / cdiv 11705 ℕcn 12046 2c2 12101 ℕ0cn0 12306 ⌊cfl 13583 ↑cexp 13855 abscabs 15017 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 ax-pre-sup 11022 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-sup 9271 df-inf 9272 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-div 11706 df-nn 12047 df-2 12109 df-3 12110 df-n0 12307 df-z 12393 df-uz 12656 df-rp 12804 df-fl 13585 df-seq 13795 df-exp 13856 df-cj 14882 df-re 14883 df-im 14884 df-sqrt 15018 df-abs 15019 |
This theorem is referenced by: knoppcnlem5 34735 knoppcnlem8 34738 knoppcnlem9 34739 knoppcnlem11 34741 knoppndvlem5 34754 knoppndvlem6 34755 knoppndvlem10 34759 knoppndvlem11 34760 knoppndvlem15 34764 knoppf 34773 |
Copyright terms: Public domain | W3C validator |