MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigth Structured version   Visualization version   GIF version

Theorem konigth 10256
Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖𝐴, then Σ𝑖𝐴𝑚(𝑖) ≺ ∏𝑖𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
Assertion
Ref Expression
konigth (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable group:   𝐴,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝑀(𝑖)   𝑁(𝑖)

Proof of Theorem konigth
Dummy variables 𝑎 𝑒 𝑓 𝑗 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 konigth.1 . 2 𝐴 ∈ V
2 konigth.2 . 2 𝑆 = 𝑖𝐴 (𝑀𝑖)
3 konigth.3 . 2 𝑃 = X𝑖𝐴 (𝑁𝑖)
4 fveq2 6756 . . . . 5 (𝑏 = 𝑎 → (𝑓𝑏) = (𝑓𝑎))
54fveq1d 6758 . . . 4 (𝑏 = 𝑎 → ((𝑓𝑏)‘𝑖) = ((𝑓𝑎)‘𝑖))
65cbvmptv 5183 . . 3 (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
76mpteq2i 5175 . 2 (𝑖𝐴 ↦ (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖))) = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
8 fveq2 6756 . . 3 (𝑗 = 𝑖 → (𝑒𝑗) = (𝑒𝑖))
98cbvmptv 5183 . 2 (𝑗𝐴 ↦ (𝑒𝑗)) = (𝑖𝐴 ↦ (𝑒𝑖))
101, 2, 3, 7, 9konigthlem 10255 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   ciun 4921   class class class wbr 5070  cmpt 5153  cfv 6418  Xcixp 8643  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-card 9628  df-acn 9631  df-ac 9803
This theorem is referenced by:  pwcfsdom  10270
  Copyright terms: Public domain W3C validator