MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigth Structured version   Visualization version   GIF version

Theorem konigth 10566
Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖𝐴, then Σ𝑖𝐴𝑚(𝑖) ≺ ∏𝑖𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
Assertion
Ref Expression
konigth (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable group:   𝐴,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝑀(𝑖)   𝑁(𝑖)

Proof of Theorem konigth
Dummy variables 𝑎 𝑒 𝑓 𝑗 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 konigth.1 . 2 𝐴 ∈ V
2 konigth.2 . 2 𝑆 = 𝑖𝐴 (𝑀𝑖)
3 konigth.3 . 2 𝑃 = X𝑖𝐴 (𝑁𝑖)
4 fveq2 6891 . . . . 5 (𝑏 = 𝑎 → (𝑓𝑏) = (𝑓𝑎))
54fveq1d 6893 . . . 4 (𝑏 = 𝑎 → ((𝑓𝑏)‘𝑖) = ((𝑓𝑎)‘𝑖))
65cbvmptv 5261 . . 3 (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
76mpteq2i 5253 . 2 (𝑖𝐴 ↦ (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖))) = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
8 fveq2 6891 . . 3 (𝑗 = 𝑖 → (𝑒𝑗) = (𝑒𝑖))
98cbvmptv 5261 . 2 (𝑗𝐴 ↦ (𝑒𝑗)) = (𝑖𝐴 ↦ (𝑒𝑖))
101, 2, 3, 7, 9konigthlem 10565 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474   ciun 4997   class class class wbr 5148  cmpt 5231  cfv 6543  Xcixp 8893  csdm 8940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-er 8705  df-map 8824  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-card 9936  df-acn 9939  df-ac 10113
This theorem is referenced by:  pwcfsdom  10580
  Copyright terms: Public domain W3C validator