MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigth Structured version   Visualization version   GIF version

Theorem konigth 10522
Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖𝐴, then Σ𝑖𝐴𝑚(𝑖) ≺ ∏𝑖𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
Assertion
Ref Expression
konigth (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable group:   𝐴,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝑀(𝑖)   𝑁(𝑖)

Proof of Theorem konigth
Dummy variables 𝑎 𝑒 𝑓 𝑗 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 konigth.1 . 2 𝐴 ∈ V
2 konigth.2 . 2 𝑆 = 𝑖𝐴 (𝑀𝑖)
3 konigth.3 . 2 𝑃 = X𝑖𝐴 (𝑁𝑖)
4 fveq2 6858 . . . . 5 (𝑏 = 𝑎 → (𝑓𝑏) = (𝑓𝑎))
54fveq1d 6860 . . . 4 (𝑏 = 𝑎 → ((𝑓𝑏)‘𝑖) = ((𝑓𝑎)‘𝑖))
65cbvmptv 5211 . . 3 (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
76mpteq2i 5203 . 2 (𝑖𝐴 ↦ (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖))) = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
8 fveq2 6858 . . 3 (𝑗 = 𝑖 → (𝑒𝑗) = (𝑒𝑖))
98cbvmptv 5211 . 2 (𝑗𝐴 ↦ (𝑒𝑗)) = (𝑖𝐴 ↦ (𝑒𝑖))
101, 2, 3, 7, 9konigthlem 10521 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447   ciun 4955   class class class wbr 5107  cmpt 5188  cfv 6511  Xcixp 8870  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-card 9892  df-acn 9895  df-ac 10069
This theorem is referenced by:  pwcfsdom  10536
  Copyright terms: Public domain W3C validator