![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > konigth | Structured version Visualization version GIF version |
Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖 ∈ 𝐴, then Σ𝑖 ∈ 𝐴𝑚(𝑖) ≺ ∏𝑖 ∈ 𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.) |
Ref | Expression |
---|---|
konigth.1 | ⊢ 𝐴 ∈ V |
konigth.2 | ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) |
konigth.3 | ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) |
Ref | Expression |
---|---|
konigth | ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | konigth.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | konigth.2 | . 2 ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) | |
3 | konigth.3 | . 2 ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) | |
4 | fveq2 6897 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑓‘𝑏) = (𝑓‘𝑎)) | |
5 | 4 | fveq1d 6899 | . . . 4 ⊢ (𝑏 = 𝑎 → ((𝑓‘𝑏)‘𝑖) = ((𝑓‘𝑎)‘𝑖)) |
6 | 5 | cbvmptv 5261 | . . 3 ⊢ (𝑏 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑏)‘𝑖)) = (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖)) |
7 | 6 | mpteq2i 5253 | . 2 ⊢ (𝑖 ∈ 𝐴 ↦ (𝑏 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑏)‘𝑖))) = (𝑖 ∈ 𝐴 ↦ (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖))) |
8 | fveq2 6897 | . . 3 ⊢ (𝑗 = 𝑖 → (𝑒‘𝑗) = (𝑒‘𝑖)) | |
9 | 8 | cbvmptv 5261 | . 2 ⊢ (𝑗 ∈ 𝐴 ↦ (𝑒‘𝑗)) = (𝑖 ∈ 𝐴 ↦ (𝑒‘𝑖)) |
10 | 1, 2, 3, 7, 9 | konigthlem 10592 | 1 ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 ∪ ciun 4996 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6548 Xcixp 8916 ≺ csdm 8963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-ac2 10487 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-card 9963 df-acn 9966 df-ac 10140 |
This theorem is referenced by: pwcfsdom 10607 |
Copyright terms: Public domain | W3C validator |