MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigth Structured version   Visualization version   GIF version

Theorem konigth 10498
Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖𝐴, then Σ𝑖𝐴𝑚(𝑖) ≺ ∏𝑖𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
Assertion
Ref Expression
konigth (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable group:   𝐴,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝑀(𝑖)   𝑁(𝑖)

Proof of Theorem konigth
Dummy variables 𝑎 𝑒 𝑓 𝑗 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 konigth.1 . 2 𝐴 ∈ V
2 konigth.2 . 2 𝑆 = 𝑖𝐴 (𝑀𝑖)
3 konigth.3 . 2 𝑃 = X𝑖𝐴 (𝑁𝑖)
4 fveq2 6840 . . . . 5 (𝑏 = 𝑎 → (𝑓𝑏) = (𝑓𝑎))
54fveq1d 6842 . . . 4 (𝑏 = 𝑎 → ((𝑓𝑏)‘𝑖) = ((𝑓𝑎)‘𝑖))
65cbvmptv 5206 . . 3 (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
76mpteq2i 5198 . 2 (𝑖𝐴 ↦ (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖))) = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
8 fveq2 6840 . . 3 (𝑗 = 𝑖 → (𝑒𝑗) = (𝑒𝑖))
98cbvmptv 5206 . 2 (𝑗𝐴 ↦ (𝑒𝑗)) = (𝑖𝐴 ↦ (𝑒𝑖))
101, 2, 3, 7, 9konigthlem 10497 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444   ciun 4951   class class class wbr 5102  cmpt 5183  cfv 6499  Xcixp 8847  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-card 9868  df-acn 9871  df-ac 10045
This theorem is referenced by:  pwcfsdom  10512
  Copyright terms: Public domain W3C validator