| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > konigth | Structured version Visualization version GIF version | ||
| Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖 ∈ 𝐴, then Σ𝑖 ∈ 𝐴𝑚(𝑖) ≺ ∏𝑖 ∈ 𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.) |
| Ref | Expression |
|---|---|
| konigth.1 | ⊢ 𝐴 ∈ V |
| konigth.2 | ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) |
| konigth.3 | ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) |
| Ref | Expression |
|---|---|
| konigth | ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | konigth.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | konigth.2 | . 2 ⊢ 𝑆 = ∪ 𝑖 ∈ 𝐴 (𝑀‘𝑖) | |
| 3 | konigth.3 | . 2 ⊢ 𝑃 = X𝑖 ∈ 𝐴 (𝑁‘𝑖) | |
| 4 | fveq2 6840 | . . . . 5 ⊢ (𝑏 = 𝑎 → (𝑓‘𝑏) = (𝑓‘𝑎)) | |
| 5 | 4 | fveq1d 6842 | . . . 4 ⊢ (𝑏 = 𝑎 → ((𝑓‘𝑏)‘𝑖) = ((𝑓‘𝑎)‘𝑖)) |
| 6 | 5 | cbvmptv 5206 | . . 3 ⊢ (𝑏 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑏)‘𝑖)) = (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖)) |
| 7 | 6 | mpteq2i 5198 | . 2 ⊢ (𝑖 ∈ 𝐴 ↦ (𝑏 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑏)‘𝑖))) = (𝑖 ∈ 𝐴 ↦ (𝑎 ∈ (𝑀‘𝑖) ↦ ((𝑓‘𝑎)‘𝑖))) |
| 8 | fveq2 6840 | . . 3 ⊢ (𝑗 = 𝑖 → (𝑒‘𝑗) = (𝑒‘𝑖)) | |
| 9 | 8 | cbvmptv 5206 | . 2 ⊢ (𝑗 ∈ 𝐴 ↦ (𝑒‘𝑗)) = (𝑖 ∈ 𝐴 ↦ (𝑒‘𝑖)) |
| 10 | 1, 2, 3, 7, 9 | konigthlem 10497 | 1 ⊢ (∀𝑖 ∈ 𝐴 (𝑀‘𝑖) ≺ (𝑁‘𝑖) → 𝑆 ≺ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∪ ciun 4951 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 Xcixp 8847 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-card 9868 df-acn 9871 df-ac 10045 |
| This theorem is referenced by: pwcfsdom 10512 |
| Copyright terms: Public domain | W3C validator |