MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  konigth Structured version   Visualization version   GIF version

Theorem konigth 10593
Description: Konig's Theorem. If 𝑚(𝑖) ≺ 𝑛(𝑖) for all 𝑖𝐴, then Σ𝑖𝐴𝑚(𝑖) ≺ ∏𝑖𝐴𝑛(𝑖), where the sums and products stand in for disjoint union and infinite cartesian product. The version here is proven with unions rather than disjoint unions for convenience, but the version with disjoint unions is clearly a special case of this version. The Axiom of Choice is needed for this proof, but it contains AC as a simple corollary (letting 𝑚(𝑖) = ∅, this theorem says that an infinite cartesian product of nonempty sets is nonempty), so this is an AC equivalent. Theorem 11.26 of [TakeutiZaring] p. 107. (Contributed by Mario Carneiro, 22-Feb-2013.)
Hypotheses
Ref Expression
konigth.1 𝐴 ∈ V
konigth.2 𝑆 = 𝑖𝐴 (𝑀𝑖)
konigth.3 𝑃 = X𝑖𝐴 (𝑁𝑖)
Assertion
Ref Expression
konigth (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Distinct variable group:   𝐴,𝑖
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝑀(𝑖)   𝑁(𝑖)

Proof of Theorem konigth
Dummy variables 𝑎 𝑒 𝑓 𝑗 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 konigth.1 . 2 𝐴 ∈ V
2 konigth.2 . 2 𝑆 = 𝑖𝐴 (𝑀𝑖)
3 konigth.3 . 2 𝑃 = X𝑖𝐴 (𝑁𝑖)
4 fveq2 6897 . . . . 5 (𝑏 = 𝑎 → (𝑓𝑏) = (𝑓𝑎))
54fveq1d 6899 . . . 4 (𝑏 = 𝑎 → ((𝑓𝑏)‘𝑖) = ((𝑓𝑎)‘𝑖))
65cbvmptv 5261 . . 3 (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖)) = (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖))
76mpteq2i 5253 . 2 (𝑖𝐴 ↦ (𝑏 ∈ (𝑀𝑖) ↦ ((𝑓𝑏)‘𝑖))) = (𝑖𝐴 ↦ (𝑎 ∈ (𝑀𝑖) ↦ ((𝑓𝑎)‘𝑖)))
8 fveq2 6897 . . 3 (𝑗 = 𝑖 → (𝑒𝑗) = (𝑒𝑖))
98cbvmptv 5261 . 2 (𝑗𝐴 ↦ (𝑒𝑗)) = (𝑖𝐴 ↦ (𝑒𝑖))
101, 2, 3, 7, 9konigthlem 10592 1 (∀𝑖𝐴 (𝑀𝑖) ≺ (𝑁𝑖) → 𝑆𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wral 3058  Vcvv 3471   ciun 4996   class class class wbr 5148  cmpt 5231  cfv 6548  Xcixp 8916  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-ac2 10487
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-er 8725  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-card 9963  df-acn 9966  df-ac 10140
This theorem is referenced by:  pwcfsdom  10607
  Copyright terms: Public domain W3C validator