![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsucpw | Structured version Visualization version GIF version |
Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10675 or gchaleph2 10671.) (Contributed by NM, 27-Aug-2005.) |
Ref | Expression |
---|---|
alephsucpw | ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsucpw2 10110 | . 2 ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | |
2 | fvex 6904 | . . 3 ⊢ (ℵ‘suc 𝐴) ∈ V | |
3 | fvex 6904 | . . . 4 ⊢ (ℵ‘𝐴) ∈ V | |
4 | 3 | pwex 5378 | . . 3 ⊢ 𝒫 (ℵ‘𝐴) ∈ V |
5 | domtri 10555 | . . 3 ⊢ (((ℵ‘suc 𝐴) ∈ V ∧ 𝒫 (ℵ‘𝐴) ∈ V) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))) | |
6 | 2, 4, 5 | mp2an 689 | . 2 ⊢ ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) |
7 | 1, 6 | mpbir 230 | 1 ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2105 Vcvv 3473 𝒫 cpw 4602 class class class wbr 5148 suc csuc 6366 ‘cfv 6543 ≼ cdom 8941 ≺ csdm 8942 ℵcale 9935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-ac2 10462 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-oi 9509 df-har 9556 df-card 9938 df-aleph 9939 df-ac 10115 |
This theorem is referenced by: aleph1 10570 |
Copyright terms: Public domain | W3C validator |