| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsucpw | Structured version Visualization version GIF version | ||
| Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10629 or gchaleph2 10625.) (Contributed by NM, 27-Aug-2005.) |
| Ref | Expression |
|---|---|
| alephsucpw | ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephsucpw2 10064 | . 2 ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | |
| 2 | fvex 6871 | . . 3 ⊢ (ℵ‘suc 𝐴) ∈ V | |
| 3 | fvex 6871 | . . . 4 ⊢ (ℵ‘𝐴) ∈ V | |
| 4 | 3 | pwex 5335 | . . 3 ⊢ 𝒫 (ℵ‘𝐴) ∈ V |
| 5 | domtri 10509 | . . 3 ⊢ (((ℵ‘suc 𝐴) ∈ V ∧ 𝒫 (ℵ‘𝐴) ∈ V) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))) | |
| 6 | 2, 4, 5 | mp2an 692 | . 2 ⊢ ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) |
| 7 | 1, 6 | mpbir 231 | 1 ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 suc csuc 6334 ‘cfv 6511 ≼ cdom 8916 ≺ csdm 8917 ℵcale 9889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-har 9510 df-card 9892 df-aleph 9893 df-ac 10069 |
| This theorem is referenced by: aleph1 10524 |
| Copyright terms: Public domain | W3C validator |