MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucpw Structured version   Visualization version   GIF version

Theorem alephsucpw 10589
Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10695 or gchaleph2 10691.) (Contributed by NM, 27-Aug-2005.)
Assertion
Ref Expression
alephsucpw (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴)

Proof of Theorem alephsucpw
StepHypRef Expression
1 alephsucpw2 10130 . 2 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)
2 fvex 6894 . . 3 (ℵ‘suc 𝐴) ∈ V
3 fvex 6894 . . . 4 (ℵ‘𝐴) ∈ V
43pwex 5355 . . 3 𝒫 (ℵ‘𝐴) ∈ V
5 domtri 10575 . . 3 (((ℵ‘suc 𝐴) ∈ V ∧ 𝒫 (ℵ‘𝐴) ∈ V) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
62, 4, 5mp2an 692 . 2 ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
71, 6mpbir 231 1 (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2109  Vcvv 3464  𝒫 cpw 4580   class class class wbr 5124  suc csuc 6359  cfv 6536  cdom 8962  csdm 8963  cale 9955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-ac2 10482
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-oi 9529  df-har 9576  df-card 9958  df-aleph 9959  df-ac 10135
This theorem is referenced by:  aleph1  10590
  Copyright terms: Public domain W3C validator