![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsucpw | Structured version Visualization version GIF version |
Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 9898 or gchaleph2 9894.) (Contributed by NM, 27-Aug-2005.) |
Ref | Expression |
---|---|
alephsucpw | ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephsucpw2 9333 | . 2 ⊢ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴) | |
2 | fvex 6514 | . . 3 ⊢ (ℵ‘suc 𝐴) ∈ V | |
3 | fvex 6514 | . . . 4 ⊢ (ℵ‘𝐴) ∈ V | |
4 | 3 | pwex 5135 | . . 3 ⊢ 𝒫 (ℵ‘𝐴) ∈ V |
5 | domtri 9778 | . . 3 ⊢ (((ℵ‘suc 𝐴) ∈ V ∧ 𝒫 (ℵ‘𝐴) ∈ V) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))) | |
6 | 2, 4, 5 | mp2an 679 | . 2 ⊢ ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)) |
7 | 1, 6 | mpbir 223 | 1 ⊢ (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∈ wcel 2050 Vcvv 3415 𝒫 cpw 4423 class class class wbr 4930 suc csuc 6033 ‘cfv 6190 ≼ cdom 8306 ≺ csdm 8307 ℵcale 9161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5050 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-inf2 8900 ax-ac2 9685 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-tp 4447 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-tr 5032 df-id 5313 df-eprel 5318 df-po 5327 df-so 5328 df-fr 5367 df-se 5368 df-we 5369 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 df-ord 6034 df-on 6035 df-lim 6036 df-suc 6037 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-isom 6199 df-riota 6939 df-om 7399 df-wrecs 7752 df-recs 7814 df-rdg 7852 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-fin 8312 df-oi 8771 df-har 8819 df-card 9164 df-aleph 9165 df-ac 9338 |
This theorem is referenced by: aleph1 9793 |
Copyright terms: Public domain | W3C validator |