MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsucpw Structured version   Visualization version   GIF version

Theorem alephsucpw 10611
Description: The power set of an aleph dominates the successor aleph. (The Generalized Continuum Hypothesis says they are equinumerous, see gch3 10717 or gchaleph2 10713.) (Contributed by NM, 27-Aug-2005.)
Assertion
Ref Expression
alephsucpw (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴)

Proof of Theorem alephsucpw
StepHypRef Expression
1 alephsucpw2 10152 . 2 ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)
2 fvex 6918 . . 3 (ℵ‘suc 𝐴) ∈ V
3 fvex 6918 . . . 4 (ℵ‘𝐴) ∈ V
43pwex 5379 . . 3 𝒫 (ℵ‘𝐴) ∈ V
5 domtri 10597 . . 3 (((ℵ‘suc 𝐴) ∈ V ∧ 𝒫 (ℵ‘𝐴) ∈ V) → ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴)))
62, 4, 5mp2an 692 . 2 ((ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴) ↔ ¬ 𝒫 (ℵ‘𝐴) ≺ (ℵ‘suc 𝐴))
71, 6mpbir 231 1 (ℵ‘suc 𝐴) ≼ 𝒫 (ℵ‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2107  Vcvv 3479  𝒫 cpw 4599   class class class wbr 5142  suc csuc 6385  cfv 6560  cdom 8984  csdm 8985  cale 9977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-ac2 10504
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-har 9598  df-card 9980  df-aleph 9981  df-ac 10157
This theorem is referenced by:  aleph1  10612
  Copyright terms: Public domain W3C validator