MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub0 Structured version   Visualization version   GIF version

Theorem lesub0 11594
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))

Proof of Theorem lesub0
StepHypRef Expression
1 0red 11080 . . 3 (𝐵 ∈ ℝ → 0 ∈ ℝ)
2 letri3 11162 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
4 ancom 461 . . 3 ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐴 ≤ 0))
5 simpr 485 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
6 0red 11080 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ∈ ℝ)
7 simpl 483 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
8 lesub2 11572 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
95, 6, 7, 8syl3anc 1370 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
107recnd 11105 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
1110subid1d 11423 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 0) = 𝐵)
1211breq1d 5103 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 − 0) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝐵𝐴)))
139, 12bitrd 278 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1413ancoms 459 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1514anbi2d 629 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 ≤ 0) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
164, 15bitrid 282 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
173, 16bitr2d 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105   class class class wbr 5093  (class class class)co 7338  cr 10972  0cc0 10973  cle 11112  cmin 11307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-po 5533  df-so 5534  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-er 8570  df-en 8806  df-dom 8807  df-sdom 8808  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310
This theorem is referenced by:  lesub0i  11625
  Copyright terms: Public domain W3C validator