MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub0 Structured version   Visualization version   GIF version

Theorem lesub0 11712
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))

Proof of Theorem lesub0
StepHypRef Expression
1 0red 11198 . . 3 (𝐵 ∈ ℝ → 0 ∈ ℝ)
2 letri3 11280 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
31, 2sylan2 593 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
4 ancom 461 . . 3 ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐴 ≤ 0))
5 simpr 485 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
6 0red 11198 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ∈ ℝ)
7 simpl 483 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
8 lesub2 11690 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
95, 6, 7, 8syl3anc 1371 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
107recnd 11223 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
1110subid1d 11541 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 0) = 𝐵)
1211breq1d 5150 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 − 0) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝐵𝐴)))
139, 12bitrd 278 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1413ancoms 459 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1514anbi2d 629 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 ≤ 0) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
164, 15bitrid 282 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
173, 16bitr2d 279 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5140  (class class class)co 7392  cr 11090  0cc0 11091  cle 11230  cmin 11425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5291  ax-nul 5298  ax-pow 5355  ax-pr 5419  ax-un 7707  ax-resscn 11148  ax-1cn 11149  ax-icn 11150  ax-addcl 11151  ax-addrcl 11152  ax-mulcl 11153  ax-mulrcl 11154  ax-mulcom 11155  ax-addass 11156  ax-mulass 11157  ax-distr 11158  ax-i2m1 11159  ax-1ne0 11160  ax-1rid 11161  ax-rnegex 11162  ax-rrecex 11163  ax-cnre 11164  ax-pre-lttri 11165  ax-pre-lttrn 11166  ax-pre-ltadd 11167
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3474  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5141  df-opab 5203  df-mpt 5224  df-id 5566  df-po 5580  df-so 5581  df-xp 5674  df-rel 5675  df-cnv 5676  df-co 5677  df-dm 5678  df-rn 5679  df-res 5680  df-ima 5681  df-iota 6483  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7348  df-ov 7395  df-oprab 7396  df-mpo 7397  df-er 8685  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11231  df-mnf 11232  df-xr 11233  df-ltxr 11234  df-le 11235  df-sub 11427  df-neg 11428
This theorem is referenced by:  lesub0i  11743
  Copyright terms: Public domain W3C validator