MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lesub0 Structured version   Visualization version   GIF version

Theorem lesub0 11150
Description: Lemma to show a nonnegative number is zero. (Contributed by NM, 8-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lesub0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))

Proof of Theorem lesub0
StepHypRef Expression
1 0red 10637 . . 3 (𝐵 ∈ ℝ → 0 ∈ ℝ)
2 letri3 10719 . . 3 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
31, 2sylan2 595 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 0 ↔ (𝐴 ≤ 0 ∧ 0 ≤ 𝐴)))
4 ancom 464 . . 3 ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐴 ≤ 0))
5 simpr 488 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
6 0red 10637 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 0 ∈ ℝ)
7 simpl 486 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℝ)
8 lesub2 11128 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
95, 6, 7, 8syl3anc 1368 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ (𝐵 − 0) ≤ (𝐵𝐴)))
107recnd 10662 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → 𝐵 ∈ ℂ)
1110subid1d 10979 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 − 0) = 𝐵)
1211breq1d 5043 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 − 0) ≤ (𝐵𝐴) ↔ 𝐵 ≤ (𝐵𝐴)))
139, 12bitrd 282 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1413ancoms 462 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 0 ↔ 𝐵 ≤ (𝐵𝐴)))
1514anbi2d 631 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐴 ≤ 0) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
164, 15syl5bb 286 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 0 ≤ 𝐴) ↔ (0 ≤ 𝐴𝐵 ≤ (𝐵𝐴))))
173, 16bitr2d 283 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴𝐵 ≤ (𝐵𝐴)) ↔ 𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112   class class class wbr 5033  (class class class)co 7139  cr 10529  0cc0 10530  cle 10669  cmin 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866
This theorem is referenced by:  lesub0i  11181
  Copyright terms: Public domain W3C validator