Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
∈ wcel 2107 (class class class)co 7409
ℂcc 11108 0cc0 11110
− cmin 11444 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 |
This theorem is referenced by: suble0
11728 lesub0
11731 ltm1
12056 nn0sub
12522 max0sub
13175 modid
13861 modeqmodmin
13906 muldivbinom2
14223 bcn0
14270 bcnn
14272 hashfzo0
14390 hashfz0
14392 ccatlid
14536 pfxmpt
14628 pfxfv
14632 swrdpfx
14657 pfxpfx
14658 cshwsublen
14746 remul2
15077 clim0c
15451 rlimrecl
15524 o1rlimmul
15563 rlimno1
15600 incexclem
15782 supcvg
15802 pwdif
15814 geolim
15816 fallfacval3
15956 binomfallfaclem2
15984 bpolydiflem
15998 bpoly3
16002 addmodlteqALT
16268 dvdsmod
16272 ndvdssub
16352 nn0seqcvgd
16507 phiprmpw
16709 pczpre
16780 pcaddlem
16821 pcmpt2
16826 prmreclem4
16852 4sqlem9
16879 4sqlem11
16888 ramcl
16962 oddvdsnn0
19412 odf1o2
19441 srgbinomlem4
20052 zndvds0
21106 psrlidm
21523 coe1sclmul
21804 coe1sclmul2
21806 cply1mul
21818 recld2
24330 i1fadd
25212 mbfi1fseqlem6
25238 itgposval
25313 dveflem
25496 dv11cn
25518 lhop1lem
25530 coemulc
25769 plydivlem3
25808 plyrem
25818 vieta1lem2
25824 aareccl
25839 aalioulem3
25847 aaliou2b
25854 dvntaylp
25883 taylthlem1
25885 psercn
25938 pserdvlem2
25940 abelthlem2
25944 abelthlem3
25945 abelthlem5
25947 abelthlem7
25950 sinmpi
25997 cosppi
26000 sinhalfpim
26003 sincosq2sgn
26009 logcnlem3
26152 logcnlem4
26153 advlog
26162 efopn
26166 logtayl
26168 pythag
26322 chordthmlem5
26341 atanlogsublem
26420 rlimcnp
26470 efrlim
26474 rlimcxp
26478 cxploglim2
26483 emcllem5
26504 zetacvg
26519 lgamgulmlem2
26534 lgamcvg2
26559 0sgmppw
26701 ppiub
26707 chtublem
26714 logfacrlim
26727 logexprlim
26728 chtppilimlem2
26977 rplogsumlem2
26988 dchrisumlem3
26994 dchrvmasumiflem1
27004 dchrisum0lem2
27021 selberg2lem
27053 logdivbnd
27059 pntrsumo1
27068 pntrlog2bndlem4
27083 pntpbnd1
27089 axlowdimlem17
28247 crctcshlem4
29105 clwlkclwwlklem2a1
29276 clwlkclwwlklem2a
29282 clwlkclwwlklem3
29285 clwlkclwwlk
29286 ipidsq
29994 nmcfnexi
31335 freshmansdream
32412 sgnsub
33574 knoppndvlem10
35445 poimirlem19
36555 poimirlem20
36556 ftc1anc
36617 cntotbnd
36712 aks4d1p1p2
40983 aks4d1p1p7
40987 irrapxlem3
41610 irrapxlem4
41611 pell14qrgt0
41645 pell1qrgaplem
41659 acongeq
41770 jm2.18
41775 hashnzfz
43127 hashnzfz2
43128 hashnzfzclim
43129 bccn1
43151 binomcxplemnotnn0
43163 dstregt0
44039 absimlere
44238 ellimcabssub0
44381 0ellimcdiv
44413 clim0cf
44418 fprodsubrecnncnvlem
44671 ioodvbdlimc2lem
44698 dvnxpaek
44706 dvnmul
44707 itgsbtaddcnst
44746 stoweidlem7
44771 stoweidlem11
44775 stoweidlem26
44790 dirkertrigeqlem2
44863 fourierdlem57
44927 fourierdlem60
44930 fourierdlem61
44931 fourierdlem68
44938 fourierdlem104
44974 fourierdlem107
44977 fourierdlem109
44979 etransclem4
45002 etransclem23
45021 etransclem27
45025 etransclem31
45029 etransclem35
45033 sigarexp
45623 sigaradd
45630 m1modmmod
47255 dignn0flhalflem1
47349 ehl2eudisval0
47459 2sphere0
47484 line2
47486 line2x
47488 itschlc0yqe
47494 itschlc0xyqsol1
47500 itschlc0xyqsol
47501 |