Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subid1d | Structured version Visualization version GIF version |
Description: Identity law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
subid1d | ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | subid1 11171 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 − 0) = 𝐴) |
Copyright terms: Public domain | W3C validator |