| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trlco | Structured version Visualization version GIF version | ||
| Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.) |
| Ref | Expression |
|---|---|
| trlco.l | ⊢ ≤ = (le‘𝐾) |
| trlco.j | ⊢ ∨ = (join‘𝐾) |
| trlco.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| trlco.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| trlco.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| trlco | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlco.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 2 | eqid 2733 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
| 3 | trlco.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhpexnle 40178 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 ≤ 𝑊) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 ≤ 𝑊) |
| 6 | simpl1 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | simpl2 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
| 8 | simpl3 1194 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | |
| 9 | simpr 484 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) | |
| 10 | trlco.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 11 | trlco.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 12 | trlco.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
| 13 | eqid 2733 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 14 | 1, 10, 3, 11, 12, 13, 2 | trlcolem 40898 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
| 15 | 6, 7, 8, 9, 14 | syl121anc 1377 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
| 16 | 5, 15 | rexlimddv 3140 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5095 ∘ ccom 5625 ‘cfv 6489 (class class class)co 7355 lecple 17175 joincjn 18225 meetcmee 18226 Atomscatm 39435 HLchlt 39522 LHypclh 40156 LTrncltrn 40273 trLctrl 40330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-undef 8212 df-map 8761 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 |
| This theorem is referenced by: trlcone 40900 cdlemg46 40907 trljco 40912 tendopltp 40952 dialss 41218 diblss 41342 |
| Copyright terms: Public domain | W3C validator |