Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlco Structured version   Visualization version   GIF version

Theorem trlco 40667
Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.)
Hypotheses
Ref Expression
trlco.l = (le‘𝐾)
trlco.j = (join‘𝐾)
trlco.h 𝐻 = (LHyp‘𝐾)
trlco.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trlco.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlco (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))

Proof of Theorem trlco
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 trlco.l . . . 4 = (le‘𝐾)
2 eqid 2734 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
3 trlco.h . . . 4 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpexnle 39946 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 𝑊)
543ad2ant1 1133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 𝑊)
6 simpl1 1191 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 simpl2 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → 𝐹𝑇)
8 simpl3 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → 𝐺𝑇)
9 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊))
10 trlco.j . . . 4 = (join‘𝐾)
11 trlco.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
12 trlco.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
13 eqid 2734 . . . 4 (meet‘𝐾) = (meet‘𝐾)
141, 10, 3, 11, 12, 13, 2trlcolem 40666 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
156, 7, 8, 9, 14syl121anc 1376 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 𝑊)) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
165, 15rexlimddv 3145 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) → (𝑅‘(𝐹𝐺)) ((𝑅𝐹) (𝑅𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059   class class class wbr 5116  ccom 5655  cfv 6527  (class class class)co 7399  lecple 17263  joincjn 18308  meetcmee 18309  Atomscatm 39202  HLchlt 39289  LHypclh 39924  LTrncltrn 40041  trLctrl 40098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-riotaBAD 38892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-undef 8266  df-map 8836  df-proset 18291  df-poset 18310  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-oposet 39115  df-ol 39117  df-oml 39118  df-covers 39205  df-ats 39206  df-atl 39237  df-cvlat 39261  df-hlat 39290  df-llines 39438  df-lplanes 39439  df-lvols 39440  df-lines 39441  df-psubsp 39443  df-pmap 39444  df-padd 39736  df-lhyp 39928  df-laut 39929  df-ldil 40044  df-ltrn 40045  df-trl 40099
This theorem is referenced by:  trlcone  40668  cdlemg46  40675  trljco  40680  tendopltp  40720  dialss  40986  diblss  41110
  Copyright terms: Public domain W3C validator