Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > trlco | Structured version Visualization version GIF version |
Description: The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.) |
Ref | Expression |
---|---|
trlco.l | ⊢ ≤ = (le‘𝐾) |
trlco.j | ⊢ ∨ = (join‘𝐾) |
trlco.h | ⊢ 𝐻 = (LHyp‘𝐾) |
trlco.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
trlco.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
trlco | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlco.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | eqid 2739 | . . . 4 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
3 | trlco.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpexnle 37666 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 ≤ 𝑊) |
5 | 4 | 3ad2ant1 1134 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ∃𝑝 ∈ (Atoms‘𝐾) ¬ 𝑝 ≤ 𝑊) |
6 | simpl1 1192 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | simpl2 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐹 ∈ 𝑇) | |
8 | simpl3 1194 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → 𝐺 ∈ 𝑇) | |
9 | simpr 488 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) | |
10 | trlco.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | trlco.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
12 | trlco.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
13 | eqid 2739 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
14 | 1, 10, 3, 11, 12, 13, 2 | trlcolem 38386 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
15 | 6, 7, 8, 9, 14 | syl121anc 1376 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
16 | 5, 15 | rexlimddv 3202 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∃wrex 3055 class class class wbr 5031 ∘ ccom 5530 ‘cfv 6340 (class class class)co 7173 lecple 16678 joincjn 17673 meetcmee 17674 Atomscatm 36923 HLchlt 37010 LHypclh 37644 LTrncltrn 37761 trLctrl 37818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-riotaBAD 36613 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-iin 4885 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-1st 7717 df-2nd 7718 df-undef 7971 df-map 8442 df-proset 17657 df-poset 17675 df-plt 17687 df-lub 17703 df-glb 17704 df-join 17705 df-meet 17706 df-p0 17768 df-p1 17769 df-lat 17775 df-clat 17837 df-oposet 36836 df-ol 36838 df-oml 36839 df-covers 36926 df-ats 36927 df-atl 36958 df-cvlat 36982 df-hlat 37011 df-llines 37158 df-lplanes 37159 df-lvols 37160 df-lines 37161 df-psubsp 37163 df-pmap 37164 df-padd 37456 df-lhyp 37648 df-laut 37649 df-ldil 37764 df-ltrn 37765 df-trl 37819 |
This theorem is referenced by: trlcone 38388 cdlemg46 38395 trljco 38400 tendopltp 38440 dialss 38706 diblss 38830 |
Copyright terms: Public domain | W3C validator |