Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlator0 Structured version   Visualization version   GIF version

Theorem trlator0 37840
Description: The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
trl0a.z 0 = (0.‘𝐾)
trl0a.a 𝐴 = (Atoms‘𝐾)
trl0a.h 𝐻 = (LHyp‘𝐾)
trl0a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0a.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlator0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))

Proof of Theorem trlator0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2936 . . . 4 ((𝑅𝐹) ≠ 0 ↔ ¬ (𝑅𝐹) = 0 )
2 eqid 2739 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 trl0a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 trl0a.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexnle 37675 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
65ad2antrr 726 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
7 simplll 775 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpr 488 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
9 simpllr 776 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹𝑇)
10 simplr 769 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ≠ 0 )
117adantr 484 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplr 769 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
139adantr 484 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
14 simpr 488 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
15 trl0a.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
16 trl0a.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 trl0a.r . . . . . . . . . . . 12 𝑅 = ((trL‘𝐾)‘𝑊)
182, 15, 3, 4, 16, 17trl0 37839 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = 0 )
1911, 12, 13, 14, 18syl112anc 1375 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = 0 )
2019ex 416 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = 0 ))
2120necon3d 2956 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ≠ 0 → (𝐹𝑝) ≠ 𝑝))
2210, 21mpd 15 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹𝑝) ≠ 𝑝)
232, 3, 4, 16, 17trlat 37838 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
247, 8, 9, 22, 23syl112anc 1375 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ∈ 𝐴)
256, 24rexlimddv 3202 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → (𝑅𝐹) ∈ 𝐴)
2625ex 416 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ≠ 0 → (𝑅𝐹) ∈ 𝐴))
271, 26syl5bir 246 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ (𝑅𝐹) = 0 → (𝑅𝐹) ∈ 𝐴))
2827orrd 862 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) = 0 ∨ (𝑅𝐹) ∈ 𝐴))
2928orcomd 870 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846   = wceq 1542  wcel 2114  wne 2935  wrex 3055   class class class wbr 5040  cfv 6349  lecple 16687  0.cp0 17775  Atomscatm 36932  HLchlt 37019  LHypclh 37653  LTrncltrn 37770  trLctrl 37827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-map 8451  df-proset 17666  df-poset 17684  df-plt 17696  df-lub 17712  df-glb 17713  df-join 17714  df-meet 17715  df-p0 17777  df-p1 17778  df-lat 17784  df-clat 17846  df-oposet 36845  df-ol 36847  df-oml 36848  df-covers 36935  df-ats 36936  df-atl 36967  df-cvlat 36991  df-hlat 37020  df-lhyp 37657  df-laut 37658  df-ldil 37773  df-ltrn 37774  df-trl 37828
This theorem is referenced by:  trlatn0  37841  cdlemg31b0a  38364  trlcone  38397  cdlemkfid1N  38590  tendoex  38644  dia2dimlem2  38734  dia2dimlem3  38735
  Copyright terms: Public domain W3C validator