Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlator0 Structured version   Visualization version   GIF version

Theorem trlator0 39639
Description: The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
trl0a.z 0 = (0.‘𝐾)
trl0a.a 𝐴 = (Atoms‘𝐾)
trl0a.h 𝐻 = (LHyp‘𝐾)
trl0a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0a.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlator0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))

Proof of Theorem trlator0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2937 . . . 4 ((𝑅𝐹) ≠ 0 ↔ ¬ (𝑅𝐹) = 0 )
2 eqid 2728 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 trl0a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 trl0a.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexnle 39474 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
65ad2antrr 725 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
7 simplll 774 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
9 simpllr 775 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹𝑇)
10 simplr 768 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ≠ 0 )
117adantr 480 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplr 768 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
139adantr 480 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
14 simpr 484 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
15 trl0a.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
16 trl0a.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 trl0a.r . . . . . . . . . . . 12 𝑅 = ((trL‘𝐾)‘𝑊)
182, 15, 3, 4, 16, 17trl0 39638 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = 0 )
1911, 12, 13, 14, 18syl112anc 1372 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = 0 )
2019ex 412 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = 0 ))
2120necon3d 2957 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ≠ 0 → (𝐹𝑝) ≠ 𝑝))
2210, 21mpd 15 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹𝑝) ≠ 𝑝)
232, 3, 4, 16, 17trlat 39637 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
247, 8, 9, 22, 23syl112anc 1372 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ∈ 𝐴)
256, 24rexlimddv 3157 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → (𝑅𝐹) ∈ 𝐴)
2625ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ≠ 0 → (𝑅𝐹) ∈ 𝐴))
271, 26biimtrrid 242 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ (𝑅𝐹) = 0 → (𝑅𝐹) ∈ 𝐴))
2827orrd 862 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) = 0 ∨ (𝑅𝐹) ∈ 𝐴))
2928orcomd 870 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2936  wrex 3066   class class class wbr 5143  cfv 6543  lecple 17234  0.cp0 18409  Atomscatm 38730  HLchlt 38817  LHypclh 39452  LTrncltrn 39569  trLctrl 39626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-p1 18412  df-lat 18418  df-clat 18485  df-oposet 38643  df-ol 38645  df-oml 38646  df-covers 38733  df-ats 38734  df-atl 38765  df-cvlat 38789  df-hlat 38818  df-lhyp 39456  df-laut 39457  df-ldil 39572  df-ltrn 39573  df-trl 39627
This theorem is referenced by:  trlatn0  39640  cdlemg31b0a  40163  trlcone  40196  cdlemkfid1N  40389  tendoex  40443  dia2dimlem2  40533  dia2dimlem3  40534
  Copyright terms: Public domain W3C validator