Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlator0 Structured version   Visualization version   GIF version

Theorem trlator0 40154
Description: The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
trl0a.z 0 = (0.‘𝐾)
trl0a.a 𝐴 = (Atoms‘𝐾)
trl0a.h 𝐻 = (LHyp‘𝐾)
trl0a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0a.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlator0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))

Proof of Theorem trlator0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2939 . . . 4 ((𝑅𝐹) ≠ 0 ↔ ¬ (𝑅𝐹) = 0 )
2 eqid 2735 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 trl0a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 trl0a.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexnle 39989 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
65ad2antrr 726 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
7 simplll 775 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
9 simpllr 776 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹𝑇)
10 simplr 769 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ≠ 0 )
117adantr 480 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplr 769 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
139adantr 480 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
14 simpr 484 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
15 trl0a.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
16 trl0a.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 trl0a.r . . . . . . . . . . . 12 𝑅 = ((trL‘𝐾)‘𝑊)
182, 15, 3, 4, 16, 17trl0 40153 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = 0 )
1911, 12, 13, 14, 18syl112anc 1373 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = 0 )
2019ex 412 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = 0 ))
2120necon3d 2959 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ≠ 0 → (𝐹𝑝) ≠ 𝑝))
2210, 21mpd 15 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹𝑝) ≠ 𝑝)
232, 3, 4, 16, 17trlat 40152 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
247, 8, 9, 22, 23syl112anc 1373 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ∈ 𝐴)
256, 24rexlimddv 3159 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → (𝑅𝐹) ∈ 𝐴)
2625ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ≠ 0 → (𝑅𝐹) ∈ 𝐴))
271, 26biimtrrid 243 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ (𝑅𝐹) = 0 → (𝑅𝐹) ∈ 𝐴))
2827orrd 863 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) = 0 ∨ (𝑅𝐹) ∈ 𝐴))
2928orcomd 871 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  cfv 6563  lecple 17305  0.cp0 18481  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by:  trlatn0  40155  cdlemg31b0a  40678  trlcone  40711  cdlemkfid1N  40904  tendoex  40958  dia2dimlem2  41048  dia2dimlem3  41049
  Copyright terms: Public domain W3C validator