Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlator0 Structured version   Visualization version   GIF version

Theorem trlator0 38112
Description: The trace of a lattice translation is an atom or zero. (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
trl0a.z 0 = (0.‘𝐾)
trl0a.a 𝐴 = (Atoms‘𝐾)
trl0a.h 𝐻 = (LHyp‘𝐾)
trl0a.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
trl0a.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
trlator0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))

Proof of Theorem trlator0
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2943 . . . 4 ((𝑅𝐹) ≠ 0 ↔ ¬ (𝑅𝐹) = 0 )
2 eqid 2738 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
3 trl0a.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
4 trl0a.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexnle 37947 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
65ad2antrr 722 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → ∃𝑝𝐴 ¬ 𝑝(le‘𝐾)𝑊)
7 simplll 771 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
8 simpr 484 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
9 simpllr 772 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → 𝐹𝑇)
10 simplr 765 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ≠ 0 )
117adantr 480 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐾 ∈ HL ∧ 𝑊𝐻))
12 simplr 765 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊))
139adantr 480 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → 𝐹𝑇)
14 simpr 484 . . . . . . . . . . 11 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝐹𝑝) = 𝑝)
15 trl0a.z . . . . . . . . . . . 12 0 = (0.‘𝐾)
16 trl0a.t . . . . . . . . . . . 12 𝑇 = ((LTrn‘𝐾)‘𝑊)
17 trl0a.r . . . . . . . . . . . 12 𝑅 = ((trL‘𝐾)‘𝑊)
182, 15, 3, 4, 16, 17trl0 38111 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) = 𝑝)) → (𝑅𝐹) = 0 )
1911, 12, 13, 14, 18syl112anc 1372 . . . . . . . . . 10 ((((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) ∧ (𝐹𝑝) = 𝑝) → (𝑅𝐹) = 0 )
2019ex 412 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝐹𝑝) = 𝑝 → (𝑅𝐹) = 0 ))
2120necon3d 2963 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → ((𝑅𝐹) ≠ 0 → (𝐹𝑝) ≠ 𝑝))
2210, 21mpd 15 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝐹𝑝) ≠ 𝑝)
232, 3, 4, 16, 17trlat 38110 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑝) ≠ 𝑝)) → (𝑅𝐹) ∈ 𝐴)
247, 8, 9, 22, 23syl112anc 1372 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) ∧ (𝑝𝐴 ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑅𝐹) ∈ 𝐴)
256, 24rexlimddv 3219 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) ∧ (𝑅𝐹) ≠ 0 ) → (𝑅𝐹) ∈ 𝐴)
2625ex 412 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ≠ 0 → (𝑅𝐹) ∈ 𝐴))
271, 26syl5bir 242 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (¬ (𝑅𝐹) = 0 → (𝑅𝐹) ∈ 𝐴))
2827orrd 859 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) = 0 ∨ (𝑅𝐹) ∈ 𝐴))
2928orcomd 867 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → ((𝑅𝐹) ∈ 𝐴 ∨ (𝑅𝐹) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  lecple 16895  0.cp0 18056  Atomscatm 37204  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  trLctrl 38099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100
This theorem is referenced by:  trlatn0  38113  cdlemg31b0a  38636  trlcone  38669  cdlemkfid1N  38862  tendoex  38916  dia2dimlem2  39006  dia2dimlem3  39007
  Copyright terms: Public domain W3C validator