| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem19 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41673. Baer p. 45, line 8: "...is in (Fy)*..." (Contributed by NM, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
| mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
| mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
| mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
| mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
| mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
| mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
| Ref | Expression |
|---|---|
| mapdpglem19 | ⊢ (𝜑 → 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem17.ep | . 2 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
| 2 | mapdpglem.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | mapdpglem.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdpglem3.a | . . 3 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 5 | mapdpglem3.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | mapdpglem.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 7 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
| 8 | mapdpglem3.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 9 | eqid 2729 | . . 3 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 10 | mapdpglem.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | mapdpglem.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 12 | eqid 2729 | . . . 4 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 13 | 2, 3, 10 | dvhlmod 41077 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 14 | mapdpglem.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 15 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
| 16 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 17 | 15, 12, 16 | lspsncl 20859 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 18 | 13, 14, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 19 | 2, 11, 3, 12, 6, 9, 10, 18 | mapdcl2 41623 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
| 20 | 2, 3, 10 | dvhlvec 41076 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 21 | 4 | lvecdrng 20988 | . . . . 5 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
| 23 | mapdpglem4.g4 | . . . 4 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
| 24 | mapdpglem.s | . . . . 5 ⊢ − = (-g‘𝑈) | |
| 25 | mapdpglem.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 26 | mapdpglem1.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐶) | |
| 27 | mapdpglem2.j | . . . . 5 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 28 | mapdpglem3.te | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
| 29 | mapdpglem3.r | . . . . 5 ⊢ 𝑅 = (-g‘𝐶) | |
| 30 | mapdpglem3.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 31 | mapdpglem3.e | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 32 | mapdpglem4.q | . . . . 5 ⊢ 𝑄 = (0g‘𝑈) | |
| 33 | mapdpglem.ne | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 34 | mapdpglem4.jt | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 35 | mapdpglem4.z | . . . . 5 ⊢ 0 = (0g‘𝐴) | |
| 36 | mapdpglem4.z4 | . . . . 5 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
| 37 | mapdpglem4.t4 | . . . . 5 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
| 38 | mapdpglem4.xn | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
| 39 | 2, 11, 3, 15, 24, 16, 6, 10, 25, 14, 26, 27, 7, 28, 4, 5, 8, 29, 30, 31, 32, 33, 34, 35, 23, 36, 37, 38 | mapdpglem11 41649 | . . . 4 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
| 40 | eqid 2729 | . . . . 5 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 41 | 5, 35, 40 | drnginvrcl 20638 | . . . 4 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 42 | 22, 23, 39, 41 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 43 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 19, 42, 36 | lcdlssvscl 41573 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑧) ∈ (𝑀‘(𝑁‘{𝑌}))) |
| 44 | 1, 43 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐸 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4585 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 -gcsg 18843 LSSumclsm 19540 invrcinvr 20272 DivRingcdr 20614 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 LVecclvec 20985 HLchlt 39316 LHypclh 39951 DVecHcdvh 41045 LCDualclcd 41553 mapdcmpd 41591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lcv 38985 df-lfl 39024 df-lkr 39052 df-ldual 39090 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 df-lcdual 41554 df-mapd 41592 |
| This theorem is referenced by: mapdpglem20 41658 mapdpglem23 41661 |
| Copyright terms: Public domain | W3C validator |