![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem21 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 37782. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
Ref | Expression |
---|---|
mapdpglem21 | ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem4.t4 | . . 3 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
2 | 1 | oveq2d 6922 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧))) |
3 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
4 | mapdpglem3.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
5 | eqid 2826 | . . 3 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
6 | eqid 2826 | . . 3 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
7 | mapdpglem3.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
8 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
10 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | lcdlmod 37668 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
12 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
13 | 8, 12, 10 | dvhlvec 37185 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
14 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
15 | 14 | lvecdrng 19465 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
16 | 13, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
17 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
18 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
19 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
20 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
21 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
22 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
23 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
24 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
25 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
26 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
27 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
28 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
29 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
30 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
31 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | mapdpglem4.jt | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
33 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
34 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
35 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
36 | 8, 18, 12, 19, 20, 21, 9, 10, 22, 23, 24, 25, 3, 26, 14, 27, 4, 7, 28, 29, 30, 31, 32, 33, 17, 34, 1, 35 | mapdpglem11 37758 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
37 | eqid 2826 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
38 | 27, 33, 37 | drnginvrcl 19121 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
39 | 16, 17, 36, 38 | syl3anc 1496 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
40 | 8, 12, 14, 27, 9, 5, 6, 10 | lcdsbase 37676 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
41 | 39, 40 | eleqtrrd 2910 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
42 | 8, 12, 14, 27, 9, 3, 4, 10, 17, 28 | lcdvscl 37681 | . . 3 ⊢ (𝜑 → (𝑔 · 𝐺) ∈ 𝐹) |
43 | eqid 2826 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
44 | eqid 2826 | . . . . . 6 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
45 | 8, 12, 10 | dvhlmod 37186 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
46 | 19, 43, 21 | lspsncl 19337 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
47 | 45, 23, 46 | syl2anc 581 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
48 | 8, 18, 12, 43, 9, 44, 10, 47 | mapdcl2 37732 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
49 | 3, 44 | lssss 19294 | . . . . 5 ⊢ ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
50 | 48, 49 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
51 | 50, 34 | sseldd 3829 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝐹) |
52 | 3, 4, 5, 6, 7, 11, 41, 42, 51 | lmodsubdi 19277 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧)) = ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
53 | eqid 2826 | . . . . . . . . 9 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
54 | eqid 2826 | . . . . . . . . 9 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
55 | 27, 33, 53, 54, 37 | drnginvrr 19124 | . . . . . . . 8 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
56 | 16, 17, 36, 55 | syl3anc 1496 | . . . . . . 7 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
57 | eqid 2826 | . . . . . . . 8 ⊢ (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶)) | |
58 | 8, 12, 14, 54, 9, 5, 57, 10 | lcd1 37685 | . . . . . . 7 ⊢ (𝜑 → (1r‘(Scalar‘𝐶)) = (1r‘𝐴)) |
59 | 56, 58 | eqtr4d 2865 | . . . . . 6 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘(Scalar‘𝐶))) |
60 | 59 | oveq1d 6921 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = ((1r‘(Scalar‘𝐶)) · 𝐺)) |
61 | 8, 12, 14, 27, 53, 9, 3, 4, 10, 39, 17, 28 | lcdvsass 37683 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))) |
62 | 3, 5, 4, 57 | lmodvs1 19248 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
63 | 11, 28, 62 | syl2anc 581 | . . . . 5 ⊢ (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
64 | 60, 61, 63 | 3eqtr3d 2870 | . . . 4 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺)) = 𝐺) |
65 | 64 | oveq1d 6921 | . . 3 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
66 | mapdpglem17.ep | . . . 4 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
67 | 66 | oveq2i 6917 | . . 3 ⊢ (𝐺𝑅𝐸) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) |
68 | 65, 67 | syl6eqr 2880 | . 2 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅𝐸)) |
69 | 2, 52, 68 | 3eqtrd 2866 | 1 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 ⊆ wss 3799 {csn 4398 ‘cfv 6124 (class class class)co 6906 Basecbs 16223 .rcmulr 16307 Scalarcsca 16309 ·𝑠 cvsca 16310 0gc0g 16454 -gcsg 17779 LSSumclsm 18401 1rcur 18856 invrcinvr 19026 DivRingcdr 19104 LModclmod 19220 LSubSpclss 19289 LSpanclspn 19331 LVecclvec 19462 HLchlt 35426 LHypclh 36060 DVecHcdvh 37154 LCDualclcd 37662 mapdcmpd 37700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-cnex 10309 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-riotaBAD 35029 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-fal 1672 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-iin 4744 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-of 7158 df-om 7328 df-1st 7429 df-2nd 7430 df-tpos 7618 df-undef 7665 df-wrecs 7673 df-recs 7735 df-rdg 7773 df-1o 7827 df-oadd 7831 df-er 8010 df-map 8125 df-en 8224 df-dom 8225 df-sdom 8226 df-fin 8227 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-nn 11352 df-2 11415 df-3 11416 df-4 11417 df-5 11418 df-6 11419 df-n0 11620 df-z 11706 df-uz 11970 df-fz 12621 df-struct 16225 df-ndx 16226 df-slot 16227 df-base 16229 df-sets 16230 df-ress 16231 df-plusg 16319 df-mulr 16320 df-sca 16322 df-vsca 16323 df-0g 16456 df-mre 16600 df-mrc 16601 df-acs 16603 df-proset 17282 df-poset 17300 df-plt 17312 df-lub 17328 df-glb 17329 df-join 17330 df-meet 17331 df-p0 17393 df-p1 17394 df-lat 17400 df-clat 17462 df-mgm 17596 df-sgrp 17638 df-mnd 17649 df-submnd 17690 df-grp 17780 df-minusg 17781 df-sbg 17782 df-subg 17943 df-cntz 18101 df-oppg 18127 df-lsm 18403 df-cmn 18549 df-abl 18550 df-mgp 18845 df-ur 18857 df-ring 18904 df-oppr 18978 df-dvdsr 18996 df-unit 18997 df-invr 19027 df-dvr 19038 df-drng 19106 df-lmod 19222 df-lss 19290 df-lsp 19332 df-lvec 19463 df-lsatoms 35052 df-lshyp 35053 df-lcv 35095 df-lfl 35134 df-lkr 35162 df-ldual 35200 df-oposet 35252 df-ol 35254 df-oml 35255 df-covers 35342 df-ats 35343 df-atl 35374 df-cvlat 35398 df-hlat 35427 df-llines 35574 df-lplanes 35575 df-lvols 35576 df-lines 35577 df-psubsp 35579 df-pmap 35580 df-padd 35872 df-lhyp 36064 df-laut 36065 df-ldil 36180 df-ltrn 36181 df-trl 36235 df-tgrp 36819 df-tendo 36831 df-edring 36833 df-dveca 37079 df-disoa 37105 df-dvech 37155 df-dib 37215 df-dic 37249 df-dih 37305 df-doch 37424 df-djh 37471 df-lcdual 37663 df-mapd 37701 |
This theorem is referenced by: mapdpglem22 37769 |
Copyright terms: Public domain | W3C validator |