| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem21 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41828. (Contributed by NM, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
| mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
| mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
| mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
| mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
| mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
| mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
| Ref | Expression |
|---|---|
| mapdpglem21 | ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem4.t4 | . . 3 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
| 2 | 1 | oveq2d 7370 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧))) |
| 3 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
| 4 | mapdpglem3.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 5 | eqid 2733 | . . 3 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 6 | eqid 2733 | . . 3 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
| 7 | mapdpglem3.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 8 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 10 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 11 | 8, 9, 10 | lcdlmod 41714 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 12 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 13 | 8, 12, 10 | dvhlvec 41231 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 14 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 15 | 14 | lvecdrng 21043 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
| 16 | 13, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
| 17 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
| 18 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 19 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
| 20 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
| 21 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 22 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 23 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 24 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
| 25 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 26 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
| 27 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 28 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 29 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 30 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
| 31 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 32 | mapdpglem4.jt | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 33 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
| 34 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
| 35 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
| 36 | 8, 18, 12, 19, 20, 21, 9, 10, 22, 23, 24, 25, 3, 26, 14, 27, 4, 7, 28, 29, 30, 31, 32, 33, 17, 34, 1, 35 | mapdpglem11 41804 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
| 37 | eqid 2733 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 38 | 27, 33, 37 | drnginvrcl 20672 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 39 | 16, 17, 36, 38 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 40 | 8, 12, 14, 27, 9, 5, 6, 10 | lcdsbase 41722 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
| 41 | 39, 40 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
| 42 | 8, 12, 14, 27, 9, 3, 4, 10, 17, 28 | lcdvscl 41727 | . . 3 ⊢ (𝜑 → (𝑔 · 𝐺) ∈ 𝐹) |
| 43 | eqid 2733 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 44 | eqid 2733 | . . . . . 6 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
| 45 | 8, 12, 10 | dvhlmod 41232 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 46 | 19, 43, 21 | lspsncl 20914 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 47 | 45, 23, 46 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
| 48 | 8, 18, 12, 43, 9, 44, 10, 47 | mapdcl2 41778 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
| 49 | 3, 44 | lssss 20873 | . . . . 5 ⊢ ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
| 50 | 48, 49 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
| 51 | 50, 34 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝐹) |
| 52 | 3, 4, 5, 6, 7, 11, 41, 42, 51 | lmodsubdi 20856 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧)) = ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
| 53 | eqid 2733 | . . . . . . . . 9 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
| 54 | eqid 2733 | . . . . . . . . 9 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 55 | 27, 33, 53, 54, 37 | drnginvrr 20676 | . . . . . . . 8 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
| 56 | 16, 17, 36, 55 | syl3anc 1373 | . . . . . . 7 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
| 57 | eqid 2733 | . . . . . . . 8 ⊢ (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶)) | |
| 58 | 8, 12, 14, 54, 9, 5, 57, 10 | lcd1 41731 | . . . . . . 7 ⊢ (𝜑 → (1r‘(Scalar‘𝐶)) = (1r‘𝐴)) |
| 59 | 56, 58 | eqtr4d 2771 | . . . . . 6 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘(Scalar‘𝐶))) |
| 60 | 59 | oveq1d 7369 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = ((1r‘(Scalar‘𝐶)) · 𝐺)) |
| 61 | 8, 12, 14, 27, 53, 9, 3, 4, 10, 39, 17, 28 | lcdvsass 41729 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))) |
| 62 | 3, 5, 4, 57 | lmodvs1 20827 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
| 63 | 11, 28, 62 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
| 64 | 60, 61, 63 | 3eqtr3d 2776 | . . . 4 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺)) = 𝐺) |
| 65 | 64 | oveq1d 7369 | . . 3 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
| 66 | mapdpglem17.ep | . . . 4 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
| 67 | 66 | oveq2i 7365 | . . 3 ⊢ (𝐺𝑅𝐸) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) |
| 68 | 65, 67 | eqtr4di 2786 | . 2 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅𝐸)) |
| 69 | 2, 52, 68 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {csn 4577 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 .rcmulr 17166 Scalarcsca 17168 ·𝑠 cvsca 17169 0gc0g 17347 -gcsg 18852 LSSumclsm 19550 1rcur 20103 invrcinvr 20309 DivRingcdr 20648 LModclmod 20797 LSubSpclss 20868 LSpanclspn 20908 LVecclvec 21040 HLchlt 39472 LHypclh 40106 DVecHcdvh 41200 LCDualclcd 41708 mapdcmpd 41746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-riotaBAD 39075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-undef 8211 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-0g 17349 df-mre 17492 df-mrc 17493 df-acs 17495 df-proset 18204 df-poset 18223 df-plt 18238 df-lub 18254 df-glb 18255 df-join 18256 df-meet 18257 df-p0 18333 df-p1 18334 df-lat 18342 df-clat 18409 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-cntz 19233 df-oppg 19262 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-nzr 20432 df-rlreg 20613 df-domn 20614 df-drng 20650 df-lmod 20799 df-lss 20869 df-lsp 20909 df-lvec 21041 df-lsatoms 39098 df-lshyp 39099 df-lcv 39141 df-lfl 39180 df-lkr 39208 df-ldual 39246 df-oposet 39298 df-ol 39300 df-oml 39301 df-covers 39388 df-ats 39389 df-atl 39420 df-cvlat 39444 df-hlat 39473 df-llines 39620 df-lplanes 39621 df-lvols 39622 df-lines 39623 df-psubsp 39625 df-pmap 39626 df-padd 39918 df-lhyp 40110 df-laut 40111 df-ldil 40226 df-ltrn 40227 df-trl 40281 df-tgrp 40865 df-tendo 40877 df-edring 40879 df-dveca 41125 df-disoa 41151 df-dvech 41201 df-dib 41261 df-dic 41295 df-dih 41351 df-doch 41470 df-djh 41517 df-lcdual 41709 df-mapd 41747 |
| This theorem is referenced by: mapdpglem22 41815 |
| Copyright terms: Public domain | W3C validator |