![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem21 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 41663. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpglem.s | ⊢ − = (-g‘𝑈) |
mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
Ref | Expression |
---|---|
mapdpglem21 | ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem4.t4 | . . 3 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
2 | 1 | oveq2d 7464 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧))) |
3 | mapdpglem3.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
4 | mapdpglem3.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
5 | eqid 2740 | . . 3 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
6 | eqid 2740 | . . 3 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
7 | mapdpglem3.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
8 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
10 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | 8, 9, 10 | lcdlmod 41549 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
12 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
13 | 8, 12, 10 | dvhlvec 41066 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
14 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
15 | 14 | lvecdrng 21127 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
16 | 13, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
17 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
18 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
19 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
20 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
21 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
22 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
23 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
24 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
25 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
26 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
27 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
28 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
29 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
30 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
31 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
32 | mapdpglem4.jt | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
33 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
34 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
35 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
36 | 8, 18, 12, 19, 20, 21, 9, 10, 22, 23, 24, 25, 3, 26, 14, 27, 4, 7, 28, 29, 30, 31, 32, 33, 17, 34, 1, 35 | mapdpglem11 41639 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
37 | eqid 2740 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
38 | 27, 33, 37 | drnginvrcl 20775 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
39 | 16, 17, 36, 38 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
40 | 8, 12, 14, 27, 9, 5, 6, 10 | lcdsbase 41557 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
41 | 39, 40 | eleqtrrd 2847 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
42 | 8, 12, 14, 27, 9, 3, 4, 10, 17, 28 | lcdvscl 41562 | . . 3 ⊢ (𝜑 → (𝑔 · 𝐺) ∈ 𝐹) |
43 | eqid 2740 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
44 | eqid 2740 | . . . . . 6 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
45 | 8, 12, 10 | dvhlmod 41067 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
46 | 19, 43, 21 | lspsncl 20998 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
47 | 45, 23, 46 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈)) |
48 | 8, 18, 12, 43, 9, 44, 10, 47 | mapdcl2 41613 | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶)) |
49 | 3, 44 | lssss 20957 | . . . . 5 ⊢ ((𝑀‘(𝑁‘{𝑌})) ∈ (LSubSp‘𝐶) → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
50 | 48, 49 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) ⊆ 𝐹) |
51 | 50, 34 | sseldd 4009 | . . 3 ⊢ (𝜑 → 𝑧 ∈ 𝐹) |
52 | 3, 4, 5, 6, 7, 11, 41, 42, 51 | lmodsubdi 20939 | . 2 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · ((𝑔 · 𝐺)𝑅𝑧)) = ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
53 | eqid 2740 | . . . . . . . . 9 ⊢ (.r‘𝐴) = (.r‘𝐴) | |
54 | eqid 2740 | . . . . . . . . 9 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
55 | 27, 33, 53, 54, 37 | drnginvrr 20779 | . . . . . . . 8 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
56 | 16, 17, 36, 55 | syl3anc 1371 | . . . . . . 7 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘𝐴)) |
57 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘(Scalar‘𝐶)) = (1r‘(Scalar‘𝐶)) | |
58 | 8, 12, 14, 54, 9, 5, 57, 10 | lcd1 41566 | . . . . . . 7 ⊢ (𝜑 → (1r‘(Scalar‘𝐶)) = (1r‘𝐴)) |
59 | 56, 58 | eqtr4d 2783 | . . . . . 6 ⊢ (𝜑 → (𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) = (1r‘(Scalar‘𝐶))) |
60 | 59 | oveq1d 7463 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = ((1r‘(Scalar‘𝐶)) · 𝐺)) |
61 | 8, 12, 14, 27, 53, 9, 3, 4, 10, 39, 17, 28 | lcdvsass 41564 | . . . . 5 ⊢ (𝜑 → ((𝑔(.r‘𝐴)((invr‘𝐴)‘𝑔)) · 𝐺) = (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))) |
62 | 3, 5, 4, 57 | lmodvs1 20910 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
63 | 11, 28, 62 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((1r‘(Scalar‘𝐶)) · 𝐺) = 𝐺) |
64 | 60, 61, 63 | 3eqtr3d 2788 | . . . 4 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺)) = 𝐺) |
65 | 64 | oveq1d 7463 | . . 3 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧))) |
66 | mapdpglem17.ep | . . . 4 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
67 | 66 | oveq2i 7459 | . . 3 ⊢ (𝐺𝑅𝐸) = (𝐺𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) |
68 | 65, 67 | eqtr4di 2798 | . 2 ⊢ (𝜑 → ((((invr‘𝐴)‘𝑔) · (𝑔 · 𝐺))𝑅(((invr‘𝐴)‘𝑔) · 𝑧)) = (𝐺𝑅𝐸)) |
69 | 2, 52, 68 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 -gcsg 18975 LSSumclsm 19676 1rcur 20208 invrcinvr 20413 DivRingcdr 20751 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LVecclvec 21124 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 LCDualclcd 41543 mapdcmpd 41581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 |
This theorem is referenced by: mapdpglem22 41650 |
Copyright terms: Public domain | W3C validator |