Step | Hyp | Ref
| Expression |
1 | | mapdpglem4.t4 |
. . 3
β’ (π β π‘ = ((π Β· πΊ)π
π§)) |
2 | 1 | oveq2d 7421 |
. 2
β’ (π β
(((invrβπ΄)βπ) Β· π‘) = (((invrβπ΄)βπ) Β· ((π Β· πΊ)π
π§))) |
3 | | mapdpglem3.f |
. . 3
β’ πΉ = (BaseβπΆ) |
4 | | mapdpglem3.t |
. . 3
β’ Β· = (
Β·π βπΆ) |
5 | | eqid 2732 |
. . 3
β’
(ScalarβπΆ) =
(ScalarβπΆ) |
6 | | eqid 2732 |
. . 3
β’
(Baseβ(ScalarβπΆ)) = (Baseβ(ScalarβπΆ)) |
7 | | mapdpglem3.r |
. . 3
β’ π
= (-gβπΆ) |
8 | | mapdpglem.h |
. . . 4
β’ π» = (LHypβπΎ) |
9 | | mapdpglem.c |
. . . 4
β’ πΆ = ((LCDualβπΎ)βπ) |
10 | | mapdpglem.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
11 | 8, 9, 10 | lcdlmod 40451 |
. . 3
β’ (π β πΆ β LMod) |
12 | | mapdpglem.u |
. . . . . . 7
β’ π = ((DVecHβπΎ)βπ) |
13 | 8, 12, 10 | dvhlvec 39968 |
. . . . . 6
β’ (π β π β LVec) |
14 | | mapdpglem3.a |
. . . . . . 7
β’ π΄ = (Scalarβπ) |
15 | 14 | lvecdrng 20708 |
. . . . . 6
β’ (π β LVec β π΄ β
DivRing) |
16 | 13, 15 | syl 17 |
. . . . 5
β’ (π β π΄ β DivRing) |
17 | | mapdpglem4.g4 |
. . . . 5
β’ (π β π β π΅) |
18 | | mapdpglem.m |
. . . . . 6
β’ π = ((mapdβπΎ)βπ) |
19 | | mapdpglem.v |
. . . . . 6
β’ π = (Baseβπ) |
20 | | mapdpglem.s |
. . . . . 6
β’ β =
(-gβπ) |
21 | | mapdpglem.n |
. . . . . 6
β’ π = (LSpanβπ) |
22 | | mapdpglem.x |
. . . . . 6
β’ (π β π β π) |
23 | | mapdpglem.y |
. . . . . 6
β’ (π β π β π) |
24 | | mapdpglem1.p |
. . . . . 6
β’ β =
(LSSumβπΆ) |
25 | | mapdpglem2.j |
. . . . . 6
β’ π½ = (LSpanβπΆ) |
26 | | mapdpglem3.te |
. . . . . 6
β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) |
27 | | mapdpglem3.b |
. . . . . 6
β’ π΅ = (Baseβπ΄) |
28 | | mapdpglem3.g |
. . . . . 6
β’ (π β πΊ β πΉ) |
29 | | mapdpglem3.e |
. . . . . 6
β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) |
30 | | mapdpglem4.q |
. . . . . 6
β’ π = (0gβπ) |
31 | | mapdpglem.ne |
. . . . . 6
β’ (π β (πβ{π}) β (πβ{π})) |
32 | | mapdpglem4.jt |
. . . . . 6
β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) |
33 | | mapdpglem4.z |
. . . . . 6
β’ 0 =
(0gβπ΄) |
34 | | mapdpglem4.z4 |
. . . . . 6
β’ (π β π§ β (πβ(πβ{π}))) |
35 | | mapdpglem4.xn |
. . . . . 6
β’ (π β π β π) |
36 | 8, 18, 12, 19, 20, 21, 9, 10, 22, 23, 24, 25, 3, 26, 14, 27, 4, 7, 28, 29, 30, 31, 32, 33, 17, 34, 1, 35 | mapdpglem11 40541 |
. . . . 5
β’ (π β π β 0 ) |
37 | | eqid 2732 |
. . . . . 6
β’
(invrβπ΄) = (invrβπ΄) |
38 | 27, 33, 37 | drnginvrcl 20329 |
. . . . 5
β’ ((π΄ β DivRing β§ π β π΅ β§ π β 0 ) β
((invrβπ΄)βπ) β π΅) |
39 | 16, 17, 36, 38 | syl3anc 1371 |
. . . 4
β’ (π β
((invrβπ΄)βπ) β π΅) |
40 | 8, 12, 14, 27, 9, 5, 6, 10 | lcdsbase 40459 |
. . . 4
β’ (π β
(Baseβ(ScalarβπΆ)) = π΅) |
41 | 39, 40 | eleqtrrd 2836 |
. . 3
β’ (π β
((invrβπ΄)βπ) β (Baseβ(ScalarβπΆ))) |
42 | 8, 12, 14, 27, 9, 3, 4, 10, 17, 28 | lcdvscl 40464 |
. . 3
β’ (π β (π Β· πΊ) β πΉ) |
43 | | eqid 2732 |
. . . . . 6
β’
(LSubSpβπ) =
(LSubSpβπ) |
44 | | eqid 2732 |
. . . . . 6
β’
(LSubSpβπΆ) =
(LSubSpβπΆ) |
45 | 8, 12, 10 | dvhlmod 39969 |
. . . . . . 7
β’ (π β π β LMod) |
46 | 19, 43, 21 | lspsncl 20580 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
47 | 45, 23, 46 | syl2anc 584 |
. . . . . 6
β’ (π β (πβ{π}) β (LSubSpβπ)) |
48 | 8, 18, 12, 43, 9, 44, 10, 47 | mapdcl2 40515 |
. . . . 5
β’ (π β (πβ(πβ{π})) β (LSubSpβπΆ)) |
49 | 3, 44 | lssss 20539 |
. . . . 5
β’ ((πβ(πβ{π})) β (LSubSpβπΆ) β (πβ(πβ{π})) β πΉ) |
50 | 48, 49 | syl 17 |
. . . 4
β’ (π β (πβ(πβ{π})) β πΉ) |
51 | 50, 34 | sseldd 3982 |
. . 3
β’ (π β π§ β πΉ) |
52 | 3, 4, 5, 6, 7, 11,
41, 42, 51 | lmodsubdi 20521 |
. 2
β’ (π β
(((invrβπ΄)βπ) Β· ((π Β· πΊ)π
π§)) = ((((invrβπ΄)βπ) Β· (π Β· πΊ))π
(((invrβπ΄)βπ) Β· π§))) |
53 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπ΄) = (.rβπ΄) |
54 | | eqid 2732 |
. . . . . . . . 9
β’
(1rβπ΄) = (1rβπ΄) |
55 | 27, 33, 53, 54, 37 | drnginvrr 20333 |
. . . . . . . 8
β’ ((π΄ β DivRing β§ π β π΅ β§ π β 0 ) β (π(.rβπ΄)((invrβπ΄)βπ)) = (1rβπ΄)) |
56 | 16, 17, 36, 55 | syl3anc 1371 |
. . . . . . 7
β’ (π β (π(.rβπ΄)((invrβπ΄)βπ)) = (1rβπ΄)) |
57 | | eqid 2732 |
. . . . . . . 8
β’
(1rβ(ScalarβπΆ)) =
(1rβ(ScalarβπΆ)) |
58 | 8, 12, 14, 54, 9, 5, 57, 10 | lcd1 40468 |
. . . . . . 7
β’ (π β
(1rβ(ScalarβπΆ)) = (1rβπ΄)) |
59 | 56, 58 | eqtr4d 2775 |
. . . . . 6
β’ (π β (π(.rβπ΄)((invrβπ΄)βπ)) = (1rβ(ScalarβπΆ))) |
60 | 59 | oveq1d 7420 |
. . . . 5
β’ (π β ((π(.rβπ΄)((invrβπ΄)βπ)) Β· πΊ) =
((1rβ(ScalarβπΆ)) Β· πΊ)) |
61 | 8, 12, 14, 27, 53, 9, 3, 4, 10,
39, 17, 28 | lcdvsass 40466 |
. . . . 5
β’ (π β ((π(.rβπ΄)((invrβπ΄)βπ)) Β· πΊ) = (((invrβπ΄)βπ) Β· (π Β· πΊ))) |
62 | 3, 5, 4, 57 | lmodvs1 20492 |
. . . . . 6
β’ ((πΆ β LMod β§ πΊ β πΉ) β
((1rβ(ScalarβπΆ)) Β· πΊ) = πΊ) |
63 | 11, 28, 62 | syl2anc 584 |
. . . . 5
β’ (π β
((1rβ(ScalarβπΆ)) Β· πΊ) = πΊ) |
64 | 60, 61, 63 | 3eqtr3d 2780 |
. . . 4
β’ (π β
(((invrβπ΄)βπ) Β· (π Β· πΊ)) = πΊ) |
65 | 64 | oveq1d 7420 |
. . 3
β’ (π β
((((invrβπ΄)βπ) Β· (π Β· πΊ))π
(((invrβπ΄)βπ) Β· π§)) = (πΊπ
(((invrβπ΄)βπ) Β· π§))) |
66 | | mapdpglem17.ep |
. . . 4
β’ πΈ =
(((invrβπ΄)βπ) Β· π§) |
67 | 66 | oveq2i 7416 |
. . 3
β’ (πΊπ
πΈ) = (πΊπ
(((invrβπ΄)βπ) Β· π§)) |
68 | 65, 67 | eqtr4di 2790 |
. 2
β’ (π β
((((invrβπ΄)βπ) Β· (π Β· πΊ))π
(((invrβπ΄)βπ) Β· π§)) = (πΊπ
πΈ)) |
69 | 2, 52, 68 | 3eqtrd 2776 |
1
β’ (π β
(((invrβπ΄)βπ) Β· π‘) = (πΊπ
πΈ)) |