Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapvvlem1 | Structured version Visualization version GIF version |
Description: Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapglem6.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapglem6.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapglem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapglem6.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapglem6.q | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapglem6.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapglem6.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapglem6.t | ⊢ × = (.r‘𝑅) |
hdmapglem6.z | ⊢ 0 = (0g‘𝑅) |
hdmapglem6.i | ⊢ 1 = (1r‘𝑅) |
hdmapglem6.n | ⊢ 𝑁 = (invr‘𝑅) |
hdmapglem6.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapglem6.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hdmapglem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapglem6.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
hdmapglem6.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
hdmapglem6.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
hdmapglem6.cd | ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) |
hdmapglem6.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) |
hdmapglem6.yx | ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) |
Ref | Expression |
---|---|
hgmapvvlem1 | ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem6.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapglem6.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmapglem6.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 38866 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | hdmapglem6.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | 5 | lmodring 19912 | . . . . 5 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | hdmapglem6.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
9 | hdmapglem6.g | . . . . 5 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
10 | hdmapglem6.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
11 | 10 | eldifad 3883 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 1, 2, 5, 8, 9, 3, 11 | hgmapcl 39645 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐵) |
13 | 1, 2, 5, 8, 9, 3, 12 | hgmapcl 39645 | . . . 4 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) |
14 | hdmapglem6.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) | |
15 | 14 | eldifad 3883 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
16 | 1, 2, 5, 8, 9, 3, 15 | hgmapcl 39645 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐵) |
17 | 1, 2, 3 | dvhlvec 38865 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
18 | 5 | lvecdrng 20147 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑅 ∈ DivRing) |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
20 | eldifsni 4708 | . . . . . . 7 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
21 | 14, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
22 | hdmapglem6.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
23 | 1, 2, 5, 8, 22, 9, 3, 15 | hgmapeq0 39660 | . . . . . . 7 ⊢ (𝜑 → ((𝐺‘𝑌) = 0 ↔ 𝑌 = 0 )) |
24 | 23 | necon3bid 2985 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘𝑌) ≠ 0 ↔ 𝑌 ≠ 0 )) |
25 | 21, 24 | mpbird 260 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑌) ≠ 0 ) |
26 | hdmapglem6.n | . . . . . 6 ⊢ 𝑁 = (invr‘𝑅) | |
27 | 8, 22, 26 | drnginvrcl 19789 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
28 | 19, 16, 25, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
29 | hdmapglem6.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
30 | 8, 29 | ringass 19587 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝐺‘(𝐺‘𝑋)) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
31 | 7, 13, 16, 28, 30 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
32 | hdmapglem6.i | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
33 | 8, 22, 29, 32, 26 | drnginvrr 19792 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
34 | 19, 16, 25, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
35 | 34 | oveq2d 7234 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = ((𝐺‘(𝐺‘𝑋)) × 1 )) |
36 | 8, 29, 32 | ringridm 19595 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
37 | 7, 13, 36 | syl2anc 587 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
38 | 31, 35, 37 | 3eqtrrd 2782 | . 2 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
39 | hdmapglem6.yx | . . . . . . 7 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) | |
40 | 39 | fveq2d 6726 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = (𝐺‘ 1 )) |
41 | 1, 2, 5, 8, 29, 9, 3, 15, 12 | hgmapmul 39651 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
42 | 40, 41 | eqtr3d 2779 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
43 | hdmapglem6.cd | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) | |
44 | 43 | fveq2d 6726 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = (𝐺‘ 1 )) |
45 | hdmapglem6.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
46 | hdmapglem6.o | . . . . . . 7 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
47 | hdmapglem6.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
48 | eqid 2737 | . . . . . . 7 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
49 | eqid 2737 | . . . . . . 7 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
50 | hdmapglem6.q | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑈) | |
51 | hdmapglem6.s | . . . . . . 7 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
52 | hdmapglem6.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
53 | hdmapglem6.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
54 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11 | hdmapglem5 39678 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
55 | 44, 54 | eqtr3d 2779 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝑆‘𝐶)‘𝐷)) |
56 | 42, 55 | eqtr3d 2779 | . . . 4 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
57 | 39, 43 | eqtr4d 2780 | . . . . 5 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = ((𝑆‘𝐷)‘𝐶)) |
58 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11, 57 | hdmapinvlem4 39677 | . . . 4 ⊢ (𝜑 → (𝑋 × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
59 | 56, 58 | eqtr4d 2780 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = (𝑋 × (𝐺‘𝑌))) |
60 | 59 | oveq1d 7233 | . 2 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
61 | 8, 29 | ringass 19587 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
62 | 7, 11, 16, 28, 61 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
63 | 34 | oveq2d 7234 | . . 3 ⊢ (𝜑 → (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = (𝑋 × 1 )) |
64 | 8, 29, 32 | ringridm 19595 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 × 1 ) = 𝑋) |
65 | 7, 11, 64 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑋 × 1 ) = 𝑋) |
66 | 62, 63, 65 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = 𝑋) |
67 | 38, 60, 66 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∖ cdif 3868 {csn 4546 〈cop 4552 I cid 5459 ↾ cres 5558 ‘cfv 6385 (class class class)co 7218 Basecbs 16765 +gcplusg 16807 .rcmulr 16808 Scalarcsca 16810 ·𝑠 cvsca 16811 0gc0g 16949 -gcsg 18372 1rcur 19521 Ringcrg 19567 invrcinvr 19694 DivRingcdr 19772 LModclmod 19904 LVecclvec 20144 HLchlt 37106 LHypclh 37740 LTrncltrn 37857 DVecHcdvh 38834 ocHcoch 39103 HDMapchdma 39548 HGMapchg 39639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-riotaBAD 36709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-ot 4555 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-tpos 7973 df-undef 8020 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-map 8515 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-3 11899 df-4 11900 df-5 11901 df-6 11902 df-n0 12096 df-z 12182 df-uz 12444 df-fz 13101 df-struct 16705 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-mulr 16821 df-sca 16823 df-vsca 16824 df-0g 16951 df-mre 17094 df-mrc 17095 df-acs 17097 df-proset 17807 df-poset 17825 df-plt 17841 df-lub 17857 df-glb 17858 df-join 17859 df-meet 17860 df-p0 17936 df-p1 17937 df-lat 17943 df-clat 18010 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-grp 18373 df-minusg 18374 df-sbg 18375 df-subg 18545 df-cntz 18716 df-oppg 18743 df-lsm 19030 df-cmn 19177 df-abl 19178 df-mgp 19510 df-ur 19522 df-ring 19569 df-oppr 19646 df-dvdsr 19664 df-unit 19665 df-invr 19695 df-dvr 19706 df-drng 19774 df-lmod 19906 df-lss 19974 df-lsp 20014 df-lvec 20145 df-lsatoms 36732 df-lshyp 36733 df-lcv 36775 df-lfl 36814 df-lkr 36842 df-ldual 36880 df-oposet 36932 df-ol 36934 df-oml 36935 df-covers 37022 df-ats 37023 df-atl 37054 df-cvlat 37078 df-hlat 37107 df-llines 37254 df-lplanes 37255 df-lvols 37256 df-lines 37257 df-psubsp 37259 df-pmap 37260 df-padd 37552 df-lhyp 37744 df-laut 37745 df-ldil 37860 df-ltrn 37861 df-trl 37915 df-tgrp 38499 df-tendo 38511 df-edring 38513 df-dveca 38759 df-disoa 38785 df-dvech 38835 df-dib 38895 df-dic 38929 df-dih 38985 df-doch 39104 df-djh 39151 df-lcdual 39343 df-mapd 39381 df-hvmap 39513 df-hdmap1 39549 df-hdmap 39550 df-hgmap 39640 |
This theorem is referenced by: hgmapvvlem2 39680 |
Copyright terms: Public domain | W3C validator |