![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapvvlem1 | Structured version Visualization version GIF version |
Description: Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapglem6.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapglem6.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapglem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapglem6.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapglem6.q | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapglem6.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapglem6.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapglem6.t | ⊢ × = (.r‘𝑅) |
hdmapglem6.z | ⊢ 0 = (0g‘𝑅) |
hdmapglem6.i | ⊢ 1 = (1r‘𝑅) |
hdmapglem6.n | ⊢ 𝑁 = (invr‘𝑅) |
hdmapglem6.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapglem6.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hdmapglem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapglem6.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
hdmapglem6.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
hdmapglem6.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
hdmapglem6.cd | ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) |
hdmapglem6.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) |
hdmapglem6.yx | ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) |
Ref | Expression |
---|---|
hgmapvvlem1 | ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem6.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapglem6.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmapglem6.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 41067 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | hdmapglem6.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | 5 | lmodring 20888 | . . . . 5 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | hdmapglem6.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
9 | hdmapglem6.g | . . . . 5 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
10 | hdmapglem6.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
11 | 10 | eldifad 3988 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 1, 2, 5, 8, 9, 3, 11 | hgmapcl 41846 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐵) |
13 | 1, 2, 5, 8, 9, 3, 12 | hgmapcl 41846 | . . . 4 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) |
14 | hdmapglem6.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) | |
15 | 14 | eldifad 3988 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
16 | 1, 2, 5, 8, 9, 3, 15 | hgmapcl 41846 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐵) |
17 | 1, 2, 3 | dvhlvec 41066 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
18 | 5 | lvecdrng 21127 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑅 ∈ DivRing) |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
20 | eldifsni 4815 | . . . . . . 7 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
21 | 14, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
22 | hdmapglem6.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
23 | 1, 2, 5, 8, 22, 9, 3, 15 | hgmapeq0 41861 | . . . . . . 7 ⊢ (𝜑 → ((𝐺‘𝑌) = 0 ↔ 𝑌 = 0 )) |
24 | 23 | necon3bid 2991 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘𝑌) ≠ 0 ↔ 𝑌 ≠ 0 )) |
25 | 21, 24 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑌) ≠ 0 ) |
26 | hdmapglem6.n | . . . . . 6 ⊢ 𝑁 = (invr‘𝑅) | |
27 | 8, 22, 26 | drnginvrcl 20775 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
28 | 19, 16, 25, 27 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
29 | hdmapglem6.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
30 | 8, 29 | ringass 20280 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝐺‘(𝐺‘𝑋)) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
31 | 7, 13, 16, 28, 30 | syl13anc 1372 | . . 3 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
32 | hdmapglem6.i | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
33 | 8, 22, 29, 32, 26 | drnginvrr 20779 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
34 | 19, 16, 25, 33 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
35 | 34 | oveq2d 7464 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = ((𝐺‘(𝐺‘𝑋)) × 1 )) |
36 | 8, 29, 32 | ringridm 20293 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
37 | 7, 13, 36 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
38 | 31, 35, 37 | 3eqtrrd 2785 | . 2 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
39 | hdmapglem6.yx | . . . . . . 7 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) | |
40 | 39 | fveq2d 6924 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = (𝐺‘ 1 )) |
41 | 1, 2, 5, 8, 29, 9, 3, 15, 12 | hgmapmul 41852 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
42 | 40, 41 | eqtr3d 2782 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
43 | hdmapglem6.cd | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) | |
44 | 43 | fveq2d 6924 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = (𝐺‘ 1 )) |
45 | hdmapglem6.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
46 | hdmapglem6.o | . . . . . . 7 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
47 | hdmapglem6.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
48 | eqid 2740 | . . . . . . 7 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
49 | eqid 2740 | . . . . . . 7 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
50 | hdmapglem6.q | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑈) | |
51 | hdmapglem6.s | . . . . . . 7 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
52 | hdmapglem6.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
53 | hdmapglem6.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
54 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11 | hdmapglem5 41879 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
55 | 44, 54 | eqtr3d 2782 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝑆‘𝐶)‘𝐷)) |
56 | 42, 55 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
57 | 39, 43 | eqtr4d 2783 | . . . . 5 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = ((𝑆‘𝐷)‘𝐶)) |
58 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11, 57 | hdmapinvlem4 41878 | . . . 4 ⊢ (𝜑 → (𝑋 × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
59 | 56, 58 | eqtr4d 2783 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = (𝑋 × (𝐺‘𝑌))) |
60 | 59 | oveq1d 7463 | . 2 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
61 | 8, 29 | ringass 20280 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
62 | 7, 11, 16, 28, 61 | syl13anc 1372 | . . 3 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
63 | 34 | oveq2d 7464 | . . 3 ⊢ (𝜑 → (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = (𝑋 × 1 )) |
64 | 8, 29, 32 | ringridm 20293 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 × 1 ) = 𝑋) |
65 | 7, 11, 64 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋 × 1 ) = 𝑋) |
66 | 62, 63, 65 | 3eqtrd 2784 | . 2 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = 𝑋) |
67 | 38, 60, 66 | 3eqtrd 2784 | 1 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 〈cop 4654 I cid 5592 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 -gcsg 18975 1rcur 20208 Ringcrg 20260 invrcinvr 20413 DivRingcdr 20751 LModclmod 20880 LVecclvec 21124 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 DVecHcdvh 41035 ocHcoch 41304 HDMapchdma 41749 HGMapchg 41840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 df-hvmap 41714 df-hdmap1 41750 df-hdmap 41751 df-hgmap 41841 |
This theorem is referenced by: hgmapvvlem2 41881 |
Copyright terms: Public domain | W3C validator |