| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapvvlem1 | Structured version Visualization version GIF version | ||
| Description: Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapglem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapglem6.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapglem6.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapglem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapglem6.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapglem6.q | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmapglem6.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapglem6.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmapglem6.t | ⊢ × = (.r‘𝑅) |
| hdmapglem6.z | ⊢ 0 = (0g‘𝑅) |
| hdmapglem6.i | ⊢ 1 = (1r‘𝑅) |
| hdmapglem6.n | ⊢ 𝑁 = (invr‘𝑅) |
| hdmapglem6.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapglem6.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hdmapglem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapglem6.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| hdmapglem6.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
| hdmapglem6.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
| hdmapglem6.cd | ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) |
| hdmapglem6.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) |
| hdmapglem6.yx | ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) |
| Ref | Expression |
|---|---|
| hgmapvvlem1 | ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapglem6.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmapglem6.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmapglem6.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | dvhlmod 41148 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 5 | hdmapglem6.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | 5 | lmodring 20799 | . . . . 5 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | hdmapglem6.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | hdmapglem6.g | . . . . 5 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 10 | hdmapglem6.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
| 11 | 10 | eldifad 3914 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | 1, 2, 5, 8, 9, 3, 11 | hgmapcl 41927 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐵) |
| 13 | 1, 2, 5, 8, 9, 3, 12 | hgmapcl 41927 | . . . 4 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) |
| 14 | hdmapglem6.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) | |
| 15 | 14 | eldifad 3914 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 16 | 1, 2, 5, 8, 9, 3, 15 | hgmapcl 41927 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐵) |
| 17 | 1, 2, 3 | dvhlvec 41147 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 18 | 5 | lvecdrng 21037 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑅 ∈ DivRing) |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 20 | eldifsni 4742 | . . . . . . 7 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
| 21 | 14, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| 22 | hdmapglem6.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 23 | 1, 2, 5, 8, 22, 9, 3, 15 | hgmapeq0 41942 | . . . . . . 7 ⊢ (𝜑 → ((𝐺‘𝑌) = 0 ↔ 𝑌 = 0 )) |
| 24 | 23 | necon3bid 2972 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘𝑌) ≠ 0 ↔ 𝑌 ≠ 0 )) |
| 25 | 21, 24 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑌) ≠ 0 ) |
| 26 | hdmapglem6.n | . . . . . 6 ⊢ 𝑁 = (invr‘𝑅) | |
| 27 | 8, 22, 26 | drnginvrcl 20666 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
| 28 | 19, 16, 25, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
| 29 | hdmapglem6.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
| 30 | 8, 29 | ringass 20169 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝐺‘(𝐺‘𝑋)) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 31 | 7, 13, 16, 28, 30 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 32 | hdmapglem6.i | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 33 | 8, 22, 29, 32, 26 | drnginvrr 20670 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
| 34 | 19, 16, 25, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
| 35 | 34 | oveq2d 7362 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = ((𝐺‘(𝐺‘𝑋)) × 1 )) |
| 36 | 8, 29, 32 | ringridm 20186 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
| 37 | 7, 13, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
| 38 | 31, 35, 37 | 3eqtrrd 2771 | . 2 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
| 39 | hdmapglem6.yx | . . . . . . 7 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) | |
| 40 | 39 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = (𝐺‘ 1 )) |
| 41 | 1, 2, 5, 8, 29, 9, 3, 15, 12 | hgmapmul 41933 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
| 42 | 40, 41 | eqtr3d 2768 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
| 43 | hdmapglem6.cd | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) | |
| 44 | 43 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = (𝐺‘ 1 )) |
| 45 | hdmapglem6.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 46 | hdmapglem6.o | . . . . . . 7 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 47 | hdmapglem6.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
| 48 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 49 | eqid 2731 | . . . . . . 7 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 50 | hdmapglem6.q | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 51 | hdmapglem6.s | . . . . . . 7 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 52 | hdmapglem6.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
| 53 | hdmapglem6.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
| 54 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11 | hdmapglem5 41960 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
| 55 | 44, 54 | eqtr3d 2768 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝑆‘𝐶)‘𝐷)) |
| 56 | 42, 55 | eqtr3d 2768 | . . . 4 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
| 57 | 39, 43 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = ((𝑆‘𝐷)‘𝐶)) |
| 58 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11, 57 | hdmapinvlem4 41959 | . . . 4 ⊢ (𝜑 → (𝑋 × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
| 59 | 56, 58 | eqtr4d 2769 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = (𝑋 × (𝐺‘𝑌))) |
| 60 | 59 | oveq1d 7361 | . 2 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
| 61 | 8, 29 | ringass 20169 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 62 | 7, 11, 16, 28, 61 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 63 | 34 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = (𝑋 × 1 )) |
| 64 | 8, 29, 32 | ringridm 20186 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 × 1 ) = 𝑋) |
| 65 | 7, 11, 64 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 × 1 ) = 𝑋) |
| 66 | 62, 63, 65 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = 𝑋) |
| 67 | 38, 60, 66 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 〈cop 4582 I cid 5510 ↾ cres 5618 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 0gc0g 17340 -gcsg 18845 1rcur 20097 Ringcrg 20149 invrcinvr 20303 DivRingcdr 20642 LModclmod 20791 LVecclvec 21034 HLchlt 39388 LHypclh 40022 LTrncltrn 40139 DVecHcdvh 41116 ocHcoch 41385 HDMapchdma 41830 HGMapchg 41921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-riotaBAD 38991 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-0g 17342 df-mre 17485 df-mrc 17486 df-acs 17488 df-proset 18197 df-poset 18216 df-plt 18231 df-lub 18247 df-glb 18248 df-join 18249 df-meet 18250 df-p0 18326 df-p1 18327 df-lat 18335 df-clat 18402 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-cntz 19227 df-oppg 19256 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-nzr 20426 df-rlreg 20607 df-domn 20608 df-drng 20644 df-lmod 20793 df-lss 20863 df-lsp 20903 df-lvec 21035 df-lsatoms 39014 df-lshyp 39015 df-lcv 39057 df-lfl 39096 df-lkr 39124 df-ldual 39162 df-oposet 39214 df-ol 39216 df-oml 39217 df-covers 39304 df-ats 39305 df-atl 39336 df-cvlat 39360 df-hlat 39389 df-llines 39536 df-lplanes 39537 df-lvols 39538 df-lines 39539 df-psubsp 39541 df-pmap 39542 df-padd 39834 df-lhyp 40026 df-laut 40027 df-ldil 40142 df-ltrn 40143 df-trl 40197 df-tgrp 40781 df-tendo 40793 df-edring 40795 df-dveca 41041 df-disoa 41067 df-dvech 41117 df-dib 41177 df-dic 41211 df-dih 41267 df-doch 41386 df-djh 41433 df-lcdual 41625 df-mapd 41663 df-hvmap 41795 df-hdmap1 41831 df-hdmap 41832 df-hgmap 41922 |
| This theorem is referenced by: hgmapvvlem2 41962 |
| Copyright terms: Public domain | W3C validator |