| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapvvlem1 | Structured version Visualization version GIF version | ||
| Description: Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapglem6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapglem6.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapglem6.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapglem6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapglem6.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapglem6.q | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmapglem6.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapglem6.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmapglem6.t | ⊢ × = (.r‘𝑅) |
| hdmapglem6.z | ⊢ 0 = (0g‘𝑅) |
| hdmapglem6.i | ⊢ 1 = (1r‘𝑅) |
| hdmapglem6.n | ⊢ 𝑁 = (invr‘𝑅) |
| hdmapglem6.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapglem6.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hdmapglem6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapglem6.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| hdmapglem6.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
| hdmapglem6.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
| hdmapglem6.cd | ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) |
| hdmapglem6.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) |
| hdmapglem6.yx | ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) |
| Ref | Expression |
|---|---|
| hgmapvvlem1 | ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapglem6.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmapglem6.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmapglem6.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | dvhlmod 41112 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 5 | hdmapglem6.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | 5 | lmodring 20866 | . . . . 5 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | hdmapglem6.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | hdmapglem6.g | . . . . 5 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 10 | hdmapglem6.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
| 11 | 10 | eldifad 3963 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | 1, 2, 5, 8, 9, 3, 11 | hgmapcl 41891 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐵) |
| 13 | 1, 2, 5, 8, 9, 3, 12 | hgmapcl 41891 | . . . 4 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) |
| 14 | hdmapglem6.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) | |
| 15 | 14 | eldifad 3963 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 16 | 1, 2, 5, 8, 9, 3, 15 | hgmapcl 41891 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐵) |
| 17 | 1, 2, 3 | dvhlvec 41111 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 18 | 5 | lvecdrng 21104 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝑅 ∈ DivRing) |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 20 | eldifsni 4790 | . . . . . . 7 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) → 𝑌 ≠ 0 ) | |
| 21 | 14, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑌 ≠ 0 ) |
| 22 | hdmapglem6.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 23 | 1, 2, 5, 8, 22, 9, 3, 15 | hgmapeq0 41906 | . . . . . . 7 ⊢ (𝜑 → ((𝐺‘𝑌) = 0 ↔ 𝑌 = 0 )) |
| 24 | 23 | necon3bid 2985 | . . . . . 6 ⊢ (𝜑 → ((𝐺‘𝑌) ≠ 0 ↔ 𝑌 ≠ 0 )) |
| 25 | 21, 24 | mpbird 257 | . . . . 5 ⊢ (𝜑 → (𝐺‘𝑌) ≠ 0 ) |
| 26 | hdmapglem6.n | . . . . . 6 ⊢ 𝑁 = (invr‘𝑅) | |
| 27 | 8, 22, 26 | drnginvrcl 20753 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
| 28 | 19, 16, 25, 27 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐺‘𝑌)) ∈ 𝐵) |
| 29 | hdmapglem6.t | . . . . 5 ⊢ × = (.r‘𝑅) | |
| 30 | 8, 29 | ringass 20250 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ((𝐺‘(𝐺‘𝑋)) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 31 | 7, 13, 16, 28, 30 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 32 | hdmapglem6.i | . . . . . 6 ⊢ 1 = (1r‘𝑅) | |
| 33 | 8, 22, 29, 32, 26 | drnginvrr 20757 | . . . . 5 ⊢ ((𝑅 ∈ DivRing ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝐺‘𝑌) ≠ 0 ) → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
| 34 | 19, 16, 25, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))) = 1 ) |
| 35 | 34 | oveq2d 7447 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = ((𝐺‘(𝐺‘𝑋)) × 1 )) |
| 36 | 8, 29, 32 | ringridm 20267 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘(𝐺‘𝑋)) ∈ 𝐵) → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
| 37 | 7, 13, 36 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × 1 ) = (𝐺‘(𝐺‘𝑋))) |
| 38 | 31, 35, 37 | 3eqtrrd 2782 | . 2 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
| 39 | hdmapglem6.yx | . . . . . . 7 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) | |
| 40 | 39 | fveq2d 6910 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = (𝐺‘ 1 )) |
| 41 | 1, 2, 5, 8, 29, 9, 3, 15, 12 | hgmapmul 41897 | . . . . . 6 ⊢ (𝜑 → (𝐺‘(𝑌 × (𝐺‘𝑋))) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
| 42 | 40, 41 | eqtr3d 2779 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌))) |
| 43 | hdmapglem6.cd | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) | |
| 44 | 43 | fveq2d 6910 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = (𝐺‘ 1 )) |
| 45 | hdmapglem6.e | . . . . . . 7 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 46 | hdmapglem6.o | . . . . . . 7 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 47 | hdmapglem6.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑈) | |
| 48 | eqid 2737 | . . . . . . 7 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 49 | eqid 2737 | . . . . . . 7 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 50 | hdmapglem6.q | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 51 | hdmapglem6.s | . . . . . . 7 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 52 | hdmapglem6.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
| 53 | hdmapglem6.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
| 54 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11 | hdmapglem5 41924 | . . . . . 6 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
| 55 | 44, 54 | eqtr3d 2779 | . . . . 5 ⊢ (𝜑 → (𝐺‘ 1 ) = ((𝑆‘𝐶)‘𝐷)) |
| 56 | 42, 55 | eqtr3d 2779 | . . . 4 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
| 57 | 39, 43 | eqtr4d 2780 | . . . . 5 ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = ((𝑆‘𝐷)‘𝐶)) |
| 58 | 1, 45, 46, 2, 47, 48, 49, 50, 5, 8, 29, 22, 51, 9, 3, 52, 53, 15, 11, 57 | hdmapinvlem4 41923 | . . . 4 ⊢ (𝜑 → (𝑋 × (𝐺‘𝑌)) = ((𝑆‘𝐶)‘𝐷)) |
| 59 | 56, 58 | eqtr4d 2780 | . . 3 ⊢ (𝜑 → ((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) = (𝑋 × (𝐺‘𝑌))) |
| 60 | 59 | oveq1d 7446 | . 2 ⊢ (𝜑 → (((𝐺‘(𝐺‘𝑋)) × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌)))) |
| 61 | 8, 29 | ringass 20250 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵 ∧ (𝑁‘(𝐺‘𝑌)) ∈ 𝐵)) → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 62 | 7, 11, 16, 28, 61 | syl13anc 1374 | . . 3 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌))))) |
| 63 | 34 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝑋 × ((𝐺‘𝑌) × (𝑁‘(𝐺‘𝑌)))) = (𝑋 × 1 )) |
| 64 | 8, 29, 32 | ringridm 20267 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 × 1 ) = 𝑋) |
| 65 | 7, 11, 64 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 × 1 ) = 𝑋) |
| 66 | 62, 63, 65 | 3eqtrd 2781 | . 2 ⊢ (𝜑 → ((𝑋 × (𝐺‘𝑌)) × (𝑁‘(𝐺‘𝑌))) = 𝑋) |
| 67 | 38, 60, 66 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 {csn 4626 〈cop 4632 I cid 5577 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 0gc0g 17484 -gcsg 18953 1rcur 20178 Ringcrg 20230 invrcinvr 20387 DivRingcdr 20729 LModclmod 20858 LVecclvec 21101 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 DVecHcdvh 41080 ocHcoch 41349 HDMapchdma 41794 HGMapchg 41885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-riotaBAD 38954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-tpos 8251 df-undef 8298 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-0g 17486 df-mre 17629 df-mrc 17630 df-acs 17632 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-subg 19141 df-cntz 19335 df-oppg 19364 df-lsm 19654 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-oppr 20334 df-dvdsr 20357 df-unit 20358 df-invr 20388 df-dvr 20401 df-nzr 20513 df-rlreg 20694 df-domn 20695 df-drng 20731 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lvec 21102 df-lsatoms 38977 df-lshyp 38978 df-lcv 39020 df-lfl 39059 df-lkr 39087 df-ldual 39125 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-tgrp 40745 df-tendo 40757 df-edring 40759 df-dveca 41005 df-disoa 41031 df-dvech 41081 df-dib 41141 df-dic 41175 df-dih 41231 df-doch 41350 df-djh 41397 df-lcdual 41589 df-mapd 41627 df-hvmap 41759 df-hdmap1 41795 df-hdmap 41796 df-hgmap 41886 |
| This theorem is referenced by: hgmapvvlem2 41926 |
| Copyright terms: Public domain | W3C validator |