![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem17N | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 41235. Baer p. 45, line 7: "Hence we may form y' = g^-1 z." (Contributed by NM, 20-Mar-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdpglem.h | β’ π» = (LHypβπΎ) |
mapdpglem.m | β’ π = ((mapdβπΎ)βπ) |
mapdpglem.u | β’ π = ((DVecHβπΎ)βπ) |
mapdpglem.v | β’ π = (Baseβπ) |
mapdpglem.s | β’ β = (-gβπ) |
mapdpglem.n | β’ π = (LSpanβπ) |
mapdpglem.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdpglem.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdpglem.x | β’ (π β π β π) |
mapdpglem.y | β’ (π β π β π) |
mapdpglem1.p | β’ β = (LSSumβπΆ) |
mapdpglem2.j | β’ π½ = (LSpanβπΆ) |
mapdpglem3.f | β’ πΉ = (BaseβπΆ) |
mapdpglem3.te | β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) |
mapdpglem3.a | β’ π΄ = (Scalarβπ) |
mapdpglem3.b | β’ π΅ = (Baseβπ΄) |
mapdpglem3.t | β’ Β· = ( Β·π βπΆ) |
mapdpglem3.r | β’ π = (-gβπΆ) |
mapdpglem3.g | β’ (π β πΊ β πΉ) |
mapdpglem3.e | β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) |
mapdpglem4.q | β’ π = (0gβπ) |
mapdpglem.ne | β’ (π β (πβ{π}) β (πβ{π})) |
mapdpglem4.jt | β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) |
mapdpglem4.z | β’ 0 = (0gβπ΄) |
mapdpglem4.g4 | β’ (π β π β π΅) |
mapdpglem4.z4 | β’ (π β π§ β (πβ(πβ{π}))) |
mapdpglem4.t4 | β’ (π β π‘ = ((π Β· πΊ)π π§)) |
mapdpglem4.xn | β’ (π β π β π) |
mapdpglem12.yn | β’ (π β π β π) |
mapdpglem17.ep | β’ πΈ = (((invrβπ΄)βπ) Β· π§) |
Ref | Expression |
---|---|
mapdpglem17N | β’ (π β πΈ β πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem17.ep | . 2 β’ πΈ = (((invrβπ΄)βπ) Β· π§) | |
2 | mapdpglem.h | . . 3 β’ π» = (LHypβπΎ) | |
3 | mapdpglem.u | . . 3 β’ π = ((DVecHβπΎ)βπ) | |
4 | mapdpglem3.a | . . 3 β’ π΄ = (Scalarβπ) | |
5 | mapdpglem3.b | . . 3 β’ π΅ = (Baseβπ΄) | |
6 | mapdpglem.c | . . 3 β’ πΆ = ((LCDualβπΎ)βπ) | |
7 | mapdpglem3.f | . . 3 β’ πΉ = (BaseβπΆ) | |
8 | mapdpglem3.t | . . 3 β’ Β· = ( Β·π βπΆ) | |
9 | mapdpglem.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
10 | 2, 3, 9 | dvhlvec 40638 | . . . . 5 β’ (π β π β LVec) |
11 | 4 | lvecdrng 20994 | . . . . 5 β’ (π β LVec β π΄ β DivRing) |
12 | 10, 11 | syl 17 | . . . 4 β’ (π β π΄ β DivRing) |
13 | mapdpglem4.g4 | . . . 4 β’ (π β π β π΅) | |
14 | mapdpglem.m | . . . . 5 β’ π = ((mapdβπΎ)βπ) | |
15 | mapdpglem.v | . . . . 5 β’ π = (Baseβπ) | |
16 | mapdpglem.s | . . . . 5 β’ β = (-gβπ) | |
17 | mapdpglem.n | . . . . 5 β’ π = (LSpanβπ) | |
18 | mapdpglem.x | . . . . 5 β’ (π β π β π) | |
19 | mapdpglem.y | . . . . 5 β’ (π β π β π) | |
20 | mapdpglem1.p | . . . . 5 β’ β = (LSSumβπΆ) | |
21 | mapdpglem2.j | . . . . 5 β’ π½ = (LSpanβπΆ) | |
22 | mapdpglem3.te | . . . . 5 β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) | |
23 | mapdpglem3.r | . . . . 5 β’ π = (-gβπΆ) | |
24 | mapdpglem3.g | . . . . 5 β’ (π β πΊ β πΉ) | |
25 | mapdpglem3.e | . . . . 5 β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) | |
26 | mapdpglem4.q | . . . . 5 β’ π = (0gβπ) | |
27 | mapdpglem.ne | . . . . 5 β’ (π β (πβ{π}) β (πβ{π})) | |
28 | mapdpglem4.jt | . . . . 5 β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) | |
29 | mapdpglem4.z | . . . . 5 β’ 0 = (0gβπ΄) | |
30 | mapdpglem4.z4 | . . . . 5 β’ (π β π§ β (πβ(πβ{π}))) | |
31 | mapdpglem4.t4 | . . . . 5 β’ (π β π‘ = ((π Β· πΊ)π π§)) | |
32 | mapdpglem4.xn | . . . . 5 β’ (π β π β π) | |
33 | 2, 14, 3, 15, 16, 17, 6, 9, 18, 19, 20, 21, 7, 22, 4, 5, 8, 23, 24, 25, 26, 27, 28, 29, 13, 30, 31, 32 | mapdpglem11 41211 | . . . 4 β’ (π β π β 0 ) |
34 | eqid 2725 | . . . . 5 β’ (invrβπ΄) = (invrβπ΄) | |
35 | 5, 29, 34 | drnginvrcl 20650 | . . . 4 β’ ((π΄ β DivRing β§ π β π΅ β§ π β 0 ) β ((invrβπ΄)βπ) β π΅) |
36 | 12, 13, 33, 35 | syl3anc 1368 | . . 3 β’ (π β ((invrβπ΄)βπ) β π΅) |
37 | eqid 2725 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
38 | eqid 2725 | . . . . . 6 β’ (LSubSpβπΆ) = (LSubSpβπΆ) | |
39 | 2, 3, 9 | dvhlmod 40639 | . . . . . . 7 β’ (π β π β LMod) |
40 | 15, 37, 17 | lspsncl 20865 | . . . . . . 7 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
41 | 39, 19, 40 | syl2anc 582 | . . . . . 6 β’ (π β (πβ{π}) β (LSubSpβπ)) |
42 | 2, 14, 3, 37, 6, 38, 9, 41 | mapdcl2 41185 | . . . . 5 β’ (π β (πβ(πβ{π})) β (LSubSpβπΆ)) |
43 | 7, 38 | lssss 20824 | . . . . 5 β’ ((πβ(πβ{π})) β (LSubSpβπΆ) β (πβ(πβ{π})) β πΉ) |
44 | 42, 43 | syl 17 | . . . 4 β’ (π β (πβ(πβ{π})) β πΉ) |
45 | 44, 30 | sseldd 3973 | . . 3 β’ (π β π§ β πΉ) |
46 | 2, 3, 4, 5, 6, 7, 8, 9, 36, 45 | lcdvscl 41134 | . 2 β’ (π β (((invrβπ΄)βπ) Β· π§) β πΉ) |
47 | 1, 46 | eqeltrid 2829 | 1 β’ (π β πΈ β πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 β wss 3939 {csn 4624 βcfv 6543 (class class class)co 7416 Basecbs 17179 Scalarcsca 17235 Β·π cvsca 17236 0gc0g 17420 -gcsg 18896 LSSumclsm 19593 invrcinvr 20330 DivRingcdr 20628 LModclmod 20747 LSubSpclss 20819 LSpanclspn 20859 LVecclvec 20991 HLchlt 38878 LHypclh 39513 DVecHcdvh 40607 LCDualclcd 41115 mapdcmpd 41153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-riotaBAD 38481 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7991 df-2nd 7992 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-0g 17422 df-mre 17565 df-mrc 17566 df-acs 17568 df-proset 18286 df-poset 18304 df-plt 18321 df-lub 18337 df-glb 18338 df-join 18339 df-meet 18340 df-p0 18416 df-p1 18417 df-lat 18423 df-clat 18490 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-submnd 18740 df-grp 18897 df-minusg 18898 df-sbg 18899 df-subg 19082 df-cntz 19272 df-oppg 19301 df-lsm 19595 df-cmn 19741 df-abl 19742 df-mgp 20079 df-rng 20097 df-ur 20126 df-ring 20179 df-oppr 20277 df-dvdsr 20300 df-unit 20301 df-invr 20331 df-dvr 20344 df-drng 20630 df-lmod 20749 df-lss 20820 df-lsp 20860 df-lvec 20992 df-lsatoms 38504 df-lshyp 38505 df-lcv 38547 df-lfl 38586 df-lkr 38614 df-ldual 38652 df-oposet 38704 df-ol 38706 df-oml 38707 df-covers 38794 df-ats 38795 df-atl 38826 df-cvlat 38850 df-hlat 38879 df-llines 39027 df-lplanes 39028 df-lvols 39029 df-lines 39030 df-psubsp 39032 df-pmap 39033 df-padd 39325 df-lhyp 39517 df-laut 39518 df-ldil 39633 df-ltrn 39634 df-trl 39688 df-tgrp 40272 df-tendo 40284 df-edring 40286 df-dveca 40532 df-disoa 40558 df-dvech 40608 df-dib 40668 df-dic 40702 df-dih 40758 df-doch 40877 df-djh 40924 df-lcdual 41116 df-mapd 41154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |