![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummhm2 | Structured version Visualization version GIF version |
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
gsummhm2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
gsummhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsummhm2.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
gsummhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
gsummhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
5 | gsummhm2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
7 | gsummhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
8 | 7 | fmpttd 7124 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
9 | gsummhm2.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | gsummhm 19910 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
11 | eqidd 2726 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
12 | eqidd 2726 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
14 | 7, 11, 12, 13 | fmptco 7138 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋)) = (𝑘 ∈ 𝐴 ↦ 𝐷)) |
15 | 14 | oveq2d 7435 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷))) |
16 | eqid 2725 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
17 | gsummhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) | |
18 | 1, 2, 3, 5, 8, 9 | gsumcl 19887 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) ∈ 𝐵) |
19 | 17 | eleq1d 2810 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
20 | eqid 2725 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
21 | 1, 20 | mhmf 18754 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
22 | 6, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
23 | 16 | fmpt 7119 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
24 | 22, 23 | sylibr 233 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
25 | 19, 24, 18 | rspcdva 3607 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
26 | 16, 17, 18, 25 | fvmptd3 7027 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) = 𝐸) |
27 | 10, 15, 26 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5149 ↦ cmpt 5232 ∘ ccom 5682 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 finSupp cfsupp 9392 Basecbs 17188 0gc0g 17429 Σg cgsu 17430 Mndcmnd 18702 MndHom cmhm 18746 CMndccmn 19752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9393 df-oi 9540 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-seq 14008 df-hash 14331 df-0g 17431 df-gsum 17432 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-mhm 18748 df-cntz 19285 df-cmn 19754 |
This theorem is referenced by: gsummulglem 19913 prdsgsum 19953 srgsummulcr 20180 sgsummulcl 20181 gsummulc1OLD 20267 gsummulc2OLD 20268 gsummulc1 20269 gsummulc2 20270 gsumvsmul 20826 lgseisenlem4 27361 gsumvsmul1 32860 pwsgprod 41914 mhphflem 41966 |
Copyright terms: Public domain | W3C validator |