| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummhm2 | Structured version Visualization version GIF version | ||
| Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
| gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsummhm2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
| gsummhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsummhm2.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
| gsummhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| gsummhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 5 | gsummhm2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
| 7 | gsummhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 8 | 7 | fmpttd 7104 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
| 9 | gsummhm2.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | gsummhm 19917 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
| 11 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
| 12 | eqidd 2736 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
| 14 | 7, 11, 12, 13 | fmptco 7118 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋)) = (𝑘 ∈ 𝐴 ↦ 𝐷)) |
| 15 | 14 | oveq2d 7419 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷))) |
| 16 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 17 | gsummhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) | |
| 18 | 1, 2, 3, 5, 8, 9 | gsumcl 19894 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) ∈ 𝐵) |
| 19 | 17 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
| 20 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 21 | 1, 20 | mhmf 18765 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 22 | 6, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 23 | 16 | fmpt 7099 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 24 | 22, 23 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
| 25 | 19, 24, 18 | rspcdva 3602 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
| 26 | 16, 17, 18, 25 | fvmptd3 7008 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) = 𝐸) |
| 27 | 10, 15, 26 | 3eqtr3d 2778 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 class class class wbr 5119 ↦ cmpt 5201 ∘ ccom 5658 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 finSupp cfsupp 9371 Basecbs 17226 0gc0g 17451 Σg cgsu 17452 Mndcmnd 18710 MndHom cmhm 18757 CMndccmn 19759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-0g 17453 df-gsum 17454 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-cntz 19298 df-cmn 19761 |
| This theorem is referenced by: gsummulglem 19920 prdsgsum 19960 srgsummulcr 20181 sgsummulcl 20182 gsummulc1OLD 20272 gsummulc2OLD 20273 gsummulc1 20274 gsummulc2 20275 gsumvsmul 20881 lgseisenlem4 27339 gsumvsmul1 32991 gsummulgc2 33000 pwsgprod 42514 mhphflem 42566 |
| Copyright terms: Public domain | W3C validator |