MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummhm2 Structured version   Visualization version   GIF version

Theorem gsummhm2 19855
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsummhm2.b 𝐵 = (Base‘𝐺)
gsummhm2.z 0 = (0g𝐺)
gsummhm2.g (𝜑𝐺 ∈ CMnd)
gsummhm2.h (𝜑𝐻 ∈ Mnd)
gsummhm2.a (𝜑𝐴𝑉)
gsummhm2.k (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))
gsummhm2.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsummhm2.w (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
gsummhm2.1 (𝑥 = 𝑋𝐶 = 𝐷)
gsummhm2.2 (𝑥 = (𝐺 Σg (𝑘𝐴𝑋)) → 𝐶 = 𝐸)
Assertion
Ref Expression
gsummhm2 (𝜑 → (𝐻 Σg (𝑘𝐴𝐷)) = 𝐸)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘,𝑥   𝐶,𝑘   𝑥,𝐷   𝑥,𝐸   𝜑,𝑘   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑘)   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑉(𝑥,𝑘)   𝑋(𝑘)   0 (𝑥,𝑘)

Proof of Theorem gsummhm2
StepHypRef Expression
1 gsummhm2.b . . 3 𝐵 = (Base‘𝐺)
2 gsummhm2.z . . 3 0 = (0g𝐺)
3 gsummhm2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummhm2.h . . 3 (𝜑𝐻 ∈ Mnd)
5 gsummhm2.a . . 3 (𝜑𝐴𝑉)
6 gsummhm2.k . . 3 (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))
7 gsummhm2.f . . . 4 ((𝜑𝑘𝐴) → 𝑋𝐵)
87fmpttd 7056 . . 3 (𝜑 → (𝑘𝐴𝑋):𝐴𝐵)
9 gsummhm2.w . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
101, 2, 3, 4, 5, 6, 8, 9gsummhm 19854 . 2 (𝜑 → (𝐻 Σg ((𝑥𝐵𝐶) ∘ (𝑘𝐴𝑋))) = ((𝑥𝐵𝐶)‘(𝐺 Σg (𝑘𝐴𝑋))))
11 eqidd 2734 . . . 4 (𝜑 → (𝑘𝐴𝑋) = (𝑘𝐴𝑋))
12 eqidd 2734 . . . 4 (𝜑 → (𝑥𝐵𝐶) = (𝑥𝐵𝐶))
13 gsummhm2.1 . . . 4 (𝑥 = 𝑋𝐶 = 𝐷)
147, 11, 12, 13fmptco 7070 . . 3 (𝜑 → ((𝑥𝐵𝐶) ∘ (𝑘𝐴𝑋)) = (𝑘𝐴𝐷))
1514oveq2d 7370 . 2 (𝜑 → (𝐻 Σg ((𝑥𝐵𝐶) ∘ (𝑘𝐴𝑋))) = (𝐻 Σg (𝑘𝐴𝐷)))
16 eqid 2733 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
17 gsummhm2.2 . . 3 (𝑥 = (𝐺 Σg (𝑘𝐴𝑋)) → 𝐶 = 𝐸)
181, 2, 3, 5, 8, 9gsumcl 19831 . . 3 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) ∈ 𝐵)
1917eleq1d 2818 . . . 4 (𝑥 = (𝐺 Σg (𝑘𝐴𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻)))
20 eqid 2733 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
211, 20mhmf 18701 . . . . . 6 ((𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
226, 21syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
2316fmpt 7051 . . . . 5 (∀𝑥𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
2422, 23sylibr 234 . . . 4 (𝜑 → ∀𝑥𝐵 𝐶 ∈ (Base‘𝐻))
2519, 24, 18rspcdva 3574 . . 3 (𝜑𝐸 ∈ (Base‘𝐻))
2616, 17, 18, 25fvmptd3 6960 . 2 (𝜑 → ((𝑥𝐵𝐶)‘(𝐺 Σg (𝑘𝐴𝑋))) = 𝐸)
2710, 15, 263eqtr3d 2776 1 (𝜑 → (𝐻 Σg (𝑘𝐴𝐷)) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  cmpt 5176  ccom 5625  wf 6484  cfv 6488  (class class class)co 7354   finSupp cfsupp 9254  Basecbs 17124  0gc0g 17347   Σg cgsu 17348  Mndcmnd 18646   MndHom cmhm 18693  CMndccmn 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559  df-seq 13913  df-hash 14242  df-0g 17349  df-gsum 17350  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-cntz 19233  df-cmn 19698
This theorem is referenced by:  gsummulglem  19857  prdsgsum  19897  srgsummulcr  20145  sgsummulcl  20146  gsummulc1OLD  20236  gsummulc2OLD  20237  gsummulc1  20238  gsummulc2  20239  gsumvsmul  20863  lgseisenlem4  27319  gsumvsmul1  33040  gsummulgc2  33049  pwsgprod  42665  mhphflem  42717
  Copyright terms: Public domain W3C validator