| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummhm2 | Structured version Visualization version GIF version | ||
| Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsummhm2.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummhm2.z | ⊢ 0 = (0g‘𝐺) |
| gsummhm2.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummhm2.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsummhm2.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummhm2.k | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) |
| gsummhm2.f | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsummhm2.w | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| gsummhm2.1 | ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) |
| gsummhm2.2 | ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) |
| Ref | Expression |
|---|---|
| gsummhm2 | ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummhm2.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummhm2.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummhm2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsummhm2.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 5 | gsummhm2.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | gsummhm2.k | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻)) | |
| 7 | gsummhm2.f | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 8 | 7 | fmpttd 7048 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋):𝐴⟶𝐵) |
| 9 | gsummhm2.w | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | gsummhm 19851 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋))) = ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
| 11 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
| 12 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 13 | gsummhm2.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐶 = 𝐷) | |
| 14 | 7, 11, 12, 13 | fmptco 7062 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋)) = (𝑘 ∈ 𝐴 ↦ 𝐷)) |
| 15 | 14 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝐻 Σg ((𝑥 ∈ 𝐵 ↦ 𝐶) ∘ (𝑘 ∈ 𝐴 ↦ 𝑋))) = (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷))) |
| 16 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
| 17 | gsummhm2.2 | . . 3 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → 𝐶 = 𝐸) | |
| 18 | 1, 2, 3, 5, 8, 9 | gsumcl 19828 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) ∈ 𝐵) |
| 19 | 17 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻))) |
| 20 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 21 | 1, 20 | mhmf 18697 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 22 | 6, 21 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 23 | 16 | fmpt 7043 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥 ∈ 𝐵 ↦ 𝐶):𝐵⟶(Base‘𝐻)) |
| 24 | 22, 23 | sylibr 234 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝐶 ∈ (Base‘𝐻)) |
| 25 | 19, 24, 18 | rspcdva 3578 | . . 3 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐻)) |
| 26 | 16, 17, 18, 25 | fvmptd3 6952 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶)‘(𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) = 𝐸) |
| 27 | 10, 15, 26 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ 𝐷)) = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 class class class wbr 5091 ↦ cmpt 5172 ∘ ccom 5620 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 Mndcmnd 18642 MndHom cmhm 18689 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-cntz 19230 df-cmn 19695 |
| This theorem is referenced by: gsummulglem 19854 prdsgsum 19894 srgsummulcr 20142 sgsummulcl 20143 gsummulc1OLD 20233 gsummulc2OLD 20234 gsummulc1 20235 gsummulc2 20236 gsumvsmul 20860 lgseisenlem4 27317 gsumvsmul1 33029 gsummulgc2 33038 pwsgprod 42583 mhphflem 42635 |
| Copyright terms: Public domain | W3C validator |