MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummhm2 Structured version   Visualization version   GIF version

Theorem gsummhm2 19918
Description: Apply a group homomorphism to a group sum, mapping version with implicit substitution. (Contributed by Mario Carneiro, 5-May-2015.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsummhm2.b 𝐵 = (Base‘𝐺)
gsummhm2.z 0 = (0g𝐺)
gsummhm2.g (𝜑𝐺 ∈ CMnd)
gsummhm2.h (𝜑𝐻 ∈ Mnd)
gsummhm2.a (𝜑𝐴𝑉)
gsummhm2.k (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))
gsummhm2.f ((𝜑𝑘𝐴) → 𝑋𝐵)
gsummhm2.w (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
gsummhm2.1 (𝑥 = 𝑋𝐶 = 𝐷)
gsummhm2.2 (𝑥 = (𝐺 Σg (𝑘𝐴𝑋)) → 𝐶 = 𝐸)
Assertion
Ref Expression
gsummhm2 (𝜑 → (𝐻 Σg (𝑘𝐴𝐷)) = 𝐸)
Distinct variable groups:   𝑥,𝑘,𝐴   𝐵,𝑘,𝑥   𝐶,𝑘   𝑥,𝐷   𝑥,𝐸   𝜑,𝑘   𝑥,𝐺   𝑥,𝐻   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑘)   𝐸(𝑘)   𝐺(𝑘)   𝐻(𝑘)   𝑉(𝑥,𝑘)   𝑋(𝑘)   0 (𝑥,𝑘)

Proof of Theorem gsummhm2
StepHypRef Expression
1 gsummhm2.b . . 3 𝐵 = (Base‘𝐺)
2 gsummhm2.z . . 3 0 = (0g𝐺)
3 gsummhm2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsummhm2.h . . 3 (𝜑𝐻 ∈ Mnd)
5 gsummhm2.a . . 3 (𝜑𝐴𝑉)
6 gsummhm2.k . . 3 (𝜑 → (𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻))
7 gsummhm2.f . . . 4 ((𝜑𝑘𝐴) → 𝑋𝐵)
87fmpttd 7104 . . 3 (𝜑 → (𝑘𝐴𝑋):𝐴𝐵)
9 gsummhm2.w . . 3 (𝜑 → (𝑘𝐴𝑋) finSupp 0 )
101, 2, 3, 4, 5, 6, 8, 9gsummhm 19917 . 2 (𝜑 → (𝐻 Σg ((𝑥𝐵𝐶) ∘ (𝑘𝐴𝑋))) = ((𝑥𝐵𝐶)‘(𝐺 Σg (𝑘𝐴𝑋))))
11 eqidd 2736 . . . 4 (𝜑 → (𝑘𝐴𝑋) = (𝑘𝐴𝑋))
12 eqidd 2736 . . . 4 (𝜑 → (𝑥𝐵𝐶) = (𝑥𝐵𝐶))
13 gsummhm2.1 . . . 4 (𝑥 = 𝑋𝐶 = 𝐷)
147, 11, 12, 13fmptco 7118 . . 3 (𝜑 → ((𝑥𝐵𝐶) ∘ (𝑘𝐴𝑋)) = (𝑘𝐴𝐷))
1514oveq2d 7419 . 2 (𝜑 → (𝐻 Σg ((𝑥𝐵𝐶) ∘ (𝑘𝐴𝑋))) = (𝐻 Σg (𝑘𝐴𝐷)))
16 eqid 2735 . . 3 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
17 gsummhm2.2 . . 3 (𝑥 = (𝐺 Σg (𝑘𝐴𝑋)) → 𝐶 = 𝐸)
181, 2, 3, 5, 8, 9gsumcl 19894 . . 3 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) ∈ 𝐵)
1917eleq1d 2819 . . . 4 (𝑥 = (𝐺 Σg (𝑘𝐴𝑋)) → (𝐶 ∈ (Base‘𝐻) ↔ 𝐸 ∈ (Base‘𝐻)))
20 eqid 2735 . . . . . . 7 (Base‘𝐻) = (Base‘𝐻)
211, 20mhmf 18765 . . . . . 6 ((𝑥𝐵𝐶) ∈ (𝐺 MndHom 𝐻) → (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
226, 21syl 17 . . . . 5 (𝜑 → (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
2316fmpt 7099 . . . . 5 (∀𝑥𝐵 𝐶 ∈ (Base‘𝐻) ↔ (𝑥𝐵𝐶):𝐵⟶(Base‘𝐻))
2422, 23sylibr 234 . . . 4 (𝜑 → ∀𝑥𝐵 𝐶 ∈ (Base‘𝐻))
2519, 24, 18rspcdva 3602 . . 3 (𝜑𝐸 ∈ (Base‘𝐻))
2616, 17, 18, 25fvmptd3 7008 . 2 (𝜑 → ((𝑥𝐵𝐶)‘(𝐺 Σg (𝑘𝐴𝑋))) = 𝐸)
2710, 15, 263eqtr3d 2778 1 (𝜑 → (𝐻 Σg (𝑘𝐴𝐷)) = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119  cmpt 5201  ccom 5658  wf 6526  cfv 6530  (class class class)co 7403   finSupp cfsupp 9371  Basecbs 17226  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710   MndHom cmhm 18757  CMndccmn 19759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-0g 17453  df-gsum 17454  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-cntz 19298  df-cmn 19761
This theorem is referenced by:  gsummulglem  19920  prdsgsum  19960  srgsummulcr  20181  sgsummulcl  20182  gsummulc1OLD  20272  gsummulc2OLD  20273  gsummulc1  20274  gsummulc2  20275  gsumvsmul  20881  lgseisenlem4  27339  gsumvsmul1  32991  gsummulgc2  33000  pwsgprod  42514  mhphflem  42566
  Copyright terms: Public domain W3C validator