![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptmhm | Structured version Visualization version GIF version |
Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018.) (Revised by AV, 8-Sep-2019.) |
Ref | Expression |
---|---|
gsummptmhm.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptmhm.z | ⊢ 0 = (0g‘𝐺) |
gsummptmhm.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptmhm.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
gsummptmhm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsummptmhm.k | ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
gsummptmhm.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
gsummptmhm.w | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
Ref | Expression |
---|---|
gsummptmhm | ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptmhm.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
2 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
3 | gsummptmhm.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) | |
4 | gsummptmhm.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
5 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
6 | 4, 5 | mhmf 18677 | . . . . . 6 ⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻)) |
7 | ffn 6718 | . . . . . 6 ⊢ (𝐾:𝐵⟶(Base‘𝐻) → 𝐾 Fn 𝐵) | |
8 | 3, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐾 Fn 𝐵) |
9 | dffn5 6951 | . . . . 5 ⊢ (𝐾 Fn 𝐵 ↔ 𝐾 = (𝑦 ∈ 𝐵 ↦ (𝐾‘𝑦))) | |
10 | 8, 9 | sylib 217 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ 𝐵 ↦ (𝐾‘𝑦))) |
11 | fveq2 6892 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝐾‘𝑦) = (𝐾‘𝐶)) | |
12 | 1, 2, 10, 11 | fmptco 7127 | . . 3 ⊢ (𝜑 → (𝐾 ∘ (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) |
13 | 12 | oveq2d 7425 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ (𝑥 ∈ 𝐴 ↦ 𝐶))) = (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶)))) |
14 | gsummptmhm.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
15 | gsummptmhm.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
16 | gsummptmhm.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
17 | gsummptmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
18 | 1 | fmpttd 7115 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
19 | gsummptmhm.w | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) | |
20 | 4, 14, 15, 16, 17, 3, 18, 19 | gsummhm 19806 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ (𝑥 ∈ 𝐴 ↦ 𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) |
21 | 13, 20 | eqtr3d 2775 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 ↦ cmpt 5232 ∘ ccom 5681 Fn wfn 6539 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 finSupp cfsupp 9361 Basecbs 17144 0gc0g 17385 Σg cgsu 17386 Mndcmnd 18625 MndHom cmhm 18669 CMndccmn 19648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-0g 17387 df-gsum 17388 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-cntz 19181 df-cmn 19650 |
This theorem is referenced by: evlsgsumadd 21654 evlsgsummul 21655 evls1gsumadd 21843 evls1gsummul 21844 evl1gsummul 21879 mat2pmatmul 22233 pm2mp 22327 cayhamlem4 22390 rhmcomulmpl 41124 |
Copyright terms: Public domain | W3C validator |