| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptmhm | Structured version Visualization version GIF version | ||
| Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018.) (Revised by AV, 8-Sep-2019.) |
| Ref | Expression |
|---|---|
| gsummptmhm.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptmhm.z | ⊢ 0 = (0g‘𝐺) |
| gsummptmhm.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptmhm.h | ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| gsummptmhm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsummptmhm.k | ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
| gsummptmhm.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| gsummptmhm.w | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsummptmhm | ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptmhm.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
| 2 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶)) | |
| 3 | gsummptmhm.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) | |
| 4 | gsummptmhm.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 6 | 4, 5 | mhmf 18701 | . . . . . 6 ⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻)) |
| 7 | ffn 6658 | . . . . . 6 ⊢ (𝐾:𝐵⟶(Base‘𝐻) → 𝐾 Fn 𝐵) | |
| 8 | 3, 6, 7 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝐾 Fn 𝐵) |
| 9 | dffn5 6888 | . . . . 5 ⊢ (𝐾 Fn 𝐵 ↔ 𝐾 = (𝑦 ∈ 𝐵 ↦ (𝐾‘𝑦))) | |
| 10 | 8, 9 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝑦 ∈ 𝐵 ↦ (𝐾‘𝑦))) |
| 11 | fveq2 6830 | . . . 4 ⊢ (𝑦 = 𝐶 → (𝐾‘𝑦) = (𝐾‘𝐶)) | |
| 12 | 1, 2, 10, 11 | fmptco 7070 | . . 3 ⊢ (𝜑 → (𝐾 ∘ (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) |
| 13 | 12 | oveq2d 7370 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ (𝑥 ∈ 𝐴 ↦ 𝐶))) = (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶)))) |
| 14 | gsummptmhm.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 15 | gsummptmhm.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 16 | gsummptmhm.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) | |
| 17 | gsummptmhm.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 18 | 1 | fmpttd 7056 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
| 19 | gsummptmhm.w | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) | |
| 20 | 4, 14, 15, 16, 17, 3, 18, 19 | gsummhm 19854 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ (𝑥 ∈ 𝐴 ↦ 𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) |
| 21 | 13, 20 | eqtr3d 2770 | 1 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝐴 ↦ (𝐾‘𝐶))) = (𝐾‘(𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ↦ cmpt 5176 ∘ ccom 5625 Fn wfn 6483 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 finSupp cfsupp 9254 Basecbs 17124 0gc0g 17347 Σg cgsu 17348 Mndcmnd 18646 MndHom cmhm 18693 CMndccmn 19696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-0g 17349 df-gsum 17350 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-mhm 18695 df-cntz 19233 df-cmn 19698 |
| This theorem is referenced by: evlsgsumadd 22029 evlsgsummul 22030 evls1gsumadd 22242 evls1gsummul 22243 evl1gsummul 22278 rhmcomulmpl 22300 mat2pmatmul 22649 pm2mp 22743 cayhamlem4 22806 rhmcomulpsr 42672 |
| Copyright terms: Public domain | W3C validator |