MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3lem Structured version   Visualization version   GIF version

Theorem frmdup3lem 18892
Description: Lemma for frmdup3 18893. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
frmdup3.m 𝑀 = (freeMnd‘𝐼)
frmdup3.b 𝐵 = (Base‘𝐺)
frmdup3.u 𝑈 = (varFMnd𝐼)
Assertion
Ref Expression
frmdup3lem (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝑀   𝑥,𝐹   𝑥,𝑈   𝑥,𝑉

Proof of Theorem frmdup3lem
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
2 frmdup3.b . . . . . 6 𝐵 = (Base‘𝐺)
31, 2mhmf 18815 . . . . 5 (𝐹 ∈ (𝑀 MndHom 𝐺) → 𝐹:(Base‘𝑀)⟶𝐵)
43ad2antrl 728 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹:(Base‘𝑀)⟶𝐵)
5 frmdup3.m . . . . . . . 8 𝑀 = (freeMnd‘𝐼)
65, 1frmdbas 18878 . . . . . . 7 (𝐼𝑉 → (Base‘𝑀) = Word 𝐼)
763ad2ant2 1133 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (Base‘𝑀) = Word 𝐼)
87adantr 480 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → (Base‘𝑀) = Word 𝐼)
98feq2d 6723 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → (𝐹:(Base‘𝑀)⟶𝐵𝐹:Word 𝐼𝐵))
104, 9mpbid 232 . . 3 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹:Word 𝐼𝐵)
1110feqmptd 6977 . 2 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐹𝑥)))
12 simplrl 777 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝐹 ∈ (𝑀 MndHom 𝐺))
13 simpr 484 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝑥 ∈ Word 𝐼)
14 frmdup3.u . . . . . . . . . 10 𝑈 = (varFMnd𝐼)
1514vrmdf 18884 . . . . . . . . 9 (𝐼𝑉𝑈:𝐼⟶Word 𝐼)
16153ad2ant2 1133 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶Word 𝐼)
177feq3d 6724 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → (𝑈:𝐼⟶(Base‘𝑀) ↔ 𝑈:𝐼⟶Word 𝐼))
1816, 17mpbird 257 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) → 𝑈:𝐼⟶(Base‘𝑀))
1918ad2antrr 726 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝑈:𝐼⟶(Base‘𝑀))
20 wrdco 14867 . . . . . 6 ((𝑥 ∈ Word 𝐼𝑈:𝐼⟶(Base‘𝑀)) → (𝑈𝑥) ∈ Word (Base‘𝑀))
2113, 19, 20syl2anc 584 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝑈𝑥) ∈ Word (Base‘𝑀))
221gsumwmhm 18871 . . . . 5 ((𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝑈𝑥) ∈ Word (Base‘𝑀)) → (𝐹‘(𝑀 Σg (𝑈𝑥))) = (𝐺 Σg (𝐹 ∘ (𝑈𝑥))))
2312, 21, 22syl2anc 584 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹‘(𝑀 Σg (𝑈𝑥))) = (𝐺 Σg (𝐹 ∘ (𝑈𝑥))))
24 simpll2 1212 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → 𝐼𝑉)
255, 14frmdgsum 18888 . . . . . 6 ((𝐼𝑉𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
2624, 13, 25syl2anc 584 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝑀 Σg (𝑈𝑥)) = 𝑥)
2726fveq2d 6911 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹‘(𝑀 Σg (𝑈𝑥))) = (𝐹𝑥))
28 coass 6287 . . . . . 6 ((𝐹𝑈) ∘ 𝑥) = (𝐹 ∘ (𝑈𝑥))
29 simplrr 778 . . . . . . 7 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹𝑈) = 𝐴)
3029coeq1d 5875 . . . . . 6 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → ((𝐹𝑈) ∘ 𝑥) = (𝐴𝑥))
3128, 30eqtr3id 2789 . . . . 5 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹 ∘ (𝑈𝑥)) = (𝐴𝑥))
3231oveq2d 7447 . . . 4 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐺 Σg (𝐹 ∘ (𝑈𝑥))) = (𝐺 Σg (𝐴𝑥)))
3323, 27, 323eqtr3d 2783 . . 3 ((((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) ∧ 𝑥 ∈ Word 𝐼) → (𝐹𝑥) = (𝐺 Σg (𝐴𝑥)))
3433mpteq2dva 5248 . 2 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → (𝑥 ∈ Word 𝐼 ↦ (𝐹𝑥)) = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
3511, 34eqtrd 2775 1 (((𝐺 ∈ Mnd ∧ 𝐼𝑉𝐴:𝐼𝐵) ∧ (𝐹 ∈ (𝑀 MndHom 𝐺) ∧ (𝐹𝑈) = 𝐴)) → 𝐹 = (𝑥 ∈ Word 𝐼 ↦ (𝐺 Σg (𝐴𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cmpt 5231  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  Word cword 14549  Basecbs 17245   Σg cgsu 17487  Mndcmnd 18760   MndHom cmhm 18807  freeMndcfrmd 18873  varFMndcvrmd 18874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-word 14550  df-lsw 14598  df-concat 14606  df-s1 14631  df-substr 14676  df-pfx 14706  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-frmd 18875  df-vrmd 18876
This theorem is referenced by:  frmdup3  18893  elmrsubrn  35505
  Copyright terms: Public domain W3C validator