MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pcl Structured version   Visualization version   GIF version

Theorem mon1pcl 26075
Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pcl.p 𝑃 = (Poly1𝑅)
uc1pcl.b 𝐵 = (Base‘𝑃)
mon1pcl.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
mon1pcl (𝐹𝑀𝐹𝐵)

Proof of Theorem mon1pcl
StepHypRef Expression
1 uc1pcl.p . . 3 𝑃 = (Poly1𝑅)
2 uc1pcl.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2731 . . 3 (0g𝑃) = (0g𝑃)
4 eqid 2731 . . 3 (deg1𝑅) = (deg1𝑅)
5 mon1pcl.m . . 3 𝑀 = (Monic1p𝑅)
6 eqid 2731 . . 3 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26073 . 2 (𝐹𝑀 ↔ (𝐹𝐵𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘((deg1𝑅)‘𝐹)) = (1r𝑅)))
87simp1bi 1145 1 (𝐹𝑀𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6481  Basecbs 17117  0gc0g 17340  1rcur 20097  Poly1cpl1 22087  coe1cco1 22088  deg1cdg1 25984  Monic1pcmn1 26056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123  df-slot 17090  df-ndx 17102  df-base 17118  df-mon1 26061
This theorem is referenced by:  mon1puc1p  26081  deg1submon1p  26083  ply1rem  26096  fta1glem1  26098  fta1glem2  26099  m1pmeq  33542  elirng  33694  irngnzply1  33699  irredminply  33724  mon1psubm  43231
  Copyright terms: Public domain W3C validator