![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mon1pcl | Structured version Visualization version GIF version |
Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
uc1pcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
uc1pcl.b | ⊢ 𝐵 = (Base‘𝑃) |
mon1pcl.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
Ref | Expression |
---|---|
mon1pcl | ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uc1pcl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | uc1pcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | eqid 2825 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
4 | eqid 2825 | . . 3 ⊢ ( deg1 ‘𝑅) = ( deg1 ‘𝑅) | |
5 | mon1pcl.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
6 | eqid 2825 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | ismon1p 24308 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑃) ∧ ((coe1‘𝐹)‘(( deg1 ‘𝑅)‘𝐹)) = (1r‘𝑅))) |
8 | 7 | simp1bi 1179 | 1 ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ‘cfv 6127 Basecbs 16229 0gc0g 16460 1rcur 18862 Poly1cpl1 19914 coe1cco1 19915 deg1 cdg1 24220 Monic1pcmn1 24291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-iota 6090 df-fun 6129 df-fv 6135 df-slot 16233 df-base 16235 df-mon1 24296 |
This theorem is referenced by: mon1puc1p 24316 deg1submon1p 24318 ply1rem 24329 fta1glem1 24331 fta1glem2 24332 mon1psubm 38622 |
Copyright terms: Public domain | W3C validator |