MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pcl Structured version   Visualization version   GIF version

Theorem mon1pcl 24310
Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pcl.p 𝑃 = (Poly1𝑅)
uc1pcl.b 𝐵 = (Base‘𝑃)
mon1pcl.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
mon1pcl (𝐹𝑀𝐹𝐵)

Proof of Theorem mon1pcl
StepHypRef Expression
1 uc1pcl.p . . 3 𝑃 = (Poly1𝑅)
2 uc1pcl.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2825 . . 3 (0g𝑃) = (0g𝑃)
4 eqid 2825 . . 3 ( deg1𝑅) = ( deg1𝑅)
5 mon1pcl.m . . 3 𝑀 = (Monic1p𝑅)
6 eqid 2825 . . 3 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 24308 . 2 (𝐹𝑀 ↔ (𝐹𝐵𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘(( deg1𝑅)‘𝐹)) = (1r𝑅)))
87simp1bi 1179 1 (𝐹𝑀𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  wcel 2164  wne 2999  cfv 6127  Basecbs 16229  0gc0g 16460  1rcur 18862  Poly1cpl1 19914  coe1cco1 19915   deg1 cdg1 24220  Monic1pcmn1 24291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-iota 6090  df-fun 6129  df-fv 6135  df-slot 16233  df-base 16235  df-mon1 24296
This theorem is referenced by:  mon1puc1p  24316  deg1submon1p  24318  ply1rem  24329  fta1glem1  24331  fta1glem2  24332  mon1psubm  38622
  Copyright terms: Public domain W3C validator