MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mon1pcl Structured version   Visualization version   GIF version

Theorem mon1pcl 26057
Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pcl.p 𝑃 = (Poly1𝑅)
uc1pcl.b 𝐵 = (Base‘𝑃)
mon1pcl.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
mon1pcl (𝐹𝑀𝐹𝐵)

Proof of Theorem mon1pcl
StepHypRef Expression
1 uc1pcl.p . . 3 𝑃 = (Poly1𝑅)
2 uc1pcl.b . . 3 𝐵 = (Base‘𝑃)
3 eqid 2730 . . 3 (0g𝑃) = (0g𝑃)
4 eqid 2730 . . 3 (deg1𝑅) = (deg1𝑅)
5 mon1pcl.m . . 3 𝑀 = (Monic1p𝑅)
6 eqid 2730 . . 3 (1r𝑅) = (1r𝑅)
71, 2, 3, 4, 5, 6ismon1p 26055 . 2 (𝐹𝑀 ↔ (𝐹𝐵𝐹 ≠ (0g𝑃) ∧ ((coe1𝐹)‘((deg1𝑅)‘𝐹)) = (1r𝑅)))
87simp1bi 1145 1 (𝐹𝑀𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  cfv 6514  Basecbs 17186  0gc0g 17409  1rcur 20097  Poly1cpl1 22068  coe1cco1 22069  deg1cdg1 25966  Monic1pcmn1 26038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-mon1 26043
This theorem is referenced by:  mon1puc1p  26063  deg1submon1p  26065  ply1rem  26078  fta1glem1  26080  fta1glem2  26081  m1pmeq  33559  elirng  33688  irngnzply1  33693  irredminply  33713  mon1psubm  43195
  Copyright terms: Public domain W3C validator