| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mon1pcl | Structured version Visualization version GIF version | ||
| Description: Monic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| uc1pcl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| uc1pcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| mon1pcl.m | ⊢ 𝑀 = (Monic1p‘𝑅) |
| Ref | Expression |
|---|---|
| mon1pcl | ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uc1pcl.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | uc1pcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | eqid 2730 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
| 4 | eqid 2730 | . . 3 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 5 | mon1pcl.m | . . 3 ⊢ 𝑀 = (Monic1p‘𝑅) | |
| 6 | eqid 2730 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismon1p 26055 | . 2 ⊢ (𝐹 ∈ 𝑀 ↔ (𝐹 ∈ 𝐵 ∧ 𝐹 ≠ (0g‘𝑃) ∧ ((coe1‘𝐹)‘((deg1‘𝑅)‘𝐹)) = (1r‘𝑅))) |
| 8 | 7 | simp1bi 1145 | 1 ⊢ (𝐹 ∈ 𝑀 → 𝐹 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ‘cfv 6514 Basecbs 17186 0gc0g 17409 1rcur 20097 Poly1cpl1 22068 coe1cco1 22069 deg1cdg1 25966 Monic1pcmn1 26038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-mon1 26043 |
| This theorem is referenced by: mon1puc1p 26063 deg1submon1p 26065 ply1rem 26078 fta1glem1 26080 fta1glem2 26081 m1pmeq 33559 elirng 33688 irngnzply1 33693 irredminply 33713 mon1psubm 43195 |
| Copyright terms: Public domain | W3C validator |