MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas Structured version   Visualization version   GIF version

Theorem mplbas 21770
Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplbas.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
mplbas 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
Distinct variable groups:   𝐵,𝑓   𝑓,𝐼   𝑅,𝑓   0 ,𝑓
Allowed substitution hints:   𝑃(𝑓)   𝑆(𝑓)   𝑈(𝑓)

Proof of Theorem mplbas
StepHypRef Expression
1 mplbas.u . 2 𝑈 = (Base‘𝑃)
2 ssrab2 4078 . . 3 {𝑓𝐵𝑓 finSupp 0 } ⊆ 𝐵
3 mplval.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
4 mplval.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
5 mplval.b . . . . 5 𝐵 = (Base‘𝑆)
6 mplval.z . . . . 5 0 = (0g𝑅)
7 eqid 2730 . . . . 5 {𝑓𝐵𝑓 finSupp 0 } = {𝑓𝐵𝑓 finSupp 0 }
83, 4, 5, 6, 7mplval 21769 . . . 4 𝑃 = (𝑆s {𝑓𝐵𝑓 finSupp 0 })
98, 5ressbas2 17188 . . 3 ({𝑓𝐵𝑓 finSupp 0 } ⊆ 𝐵 → {𝑓𝐵𝑓 finSupp 0 } = (Base‘𝑃))
102, 9ax-mp 5 . 2 {𝑓𝐵𝑓 finSupp 0 } = (Base‘𝑃)
111, 10eqtr4i 2761 1 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {crab 3430  wss 3949   class class class wbr 5149  cfv 6544  (class class class)co 7413   finSupp cfsupp 9365  Basecbs 17150  0gc0g 17391   mPwSer cmps 21678   mPoly cmpl 21680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-1cn 11172  ax-addcl 11174
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-nn 12219  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-psr 21683  df-mpl 21685
This theorem is referenced by:  mplelbas  21771  mplval2  21776  mplbasss  21777  mplsubglem2  21781  ressmplbas2  21803  mplbaspropd  21981
  Copyright terms: Public domain W3C validator