| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplbas | Structured version Visualization version GIF version | ||
| Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
| mplval.z | ⊢ 0 = (0g‘𝑅) |
| mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mplbas | ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplbas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | ssrab2 4046 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 | |
| 3 | mplval.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 4 | mplval.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | mplval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | mplval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 7 | eqid 2730 | . . . . 5 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
| 8 | 3, 4, 5, 6, 7 | mplval 21905 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }) |
| 9 | 8, 5 | ressbas2 17215 | . . 3 ⊢ ({𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃)) |
| 10 | 2, 9 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃) |
| 11 | 1, 10 | eqtr4i 2756 | 1 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3408 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 finSupp cfsupp 9319 Basecbs 17186 0gc0g 17409 mPwSer cmps 21820 mPoly cmpl 21822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-psr 21825 df-mpl 21827 |
| This theorem is referenced by: mplelbas 21907 mplval2 21912 mplbasss 21913 mplsubglem2 21917 ressmplbas2 21941 mplbaspropd 22128 |
| Copyright terms: Public domain | W3C validator |