![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplbas | Structured version Visualization version GIF version |
Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
mplval.z | ⊢ 0 = (0g‘𝑅) |
mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
mplbas | ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplbas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | ssrab2 4077 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 | |
3 | mplval.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | mplval.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | mplval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
6 | mplval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | eqid 2731 | . . . . 5 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
8 | 3, 4, 5, 6, 7 | mplval 21860 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }) |
9 | 8, 5 | ressbas2 17189 | . . 3 ⊢ ({𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃)) |
10 | 2, 9 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃) |
11 | 1, 10 | eqtr4i 2762 | 1 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {crab 3431 ⊆ wss 3948 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 finSupp cfsupp 9367 Basecbs 17151 0gc0g 17392 mPwSer cmps 21768 mPoly cmpl 21770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-1cn 11174 ax-addcl 11176 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-nn 12220 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-psr 21773 df-mpl 21775 |
This theorem is referenced by: mplelbas 21862 mplval2 21867 mplbasss 21868 mplsubglem2 21872 ressmplbas2 21894 mplbaspropd 22080 |
Copyright terms: Public domain | W3C validator |