Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mplbas | Structured version Visualization version GIF version |
Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
mplval.z | ⊢ 0 = (0g‘𝑅) |
mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
mplbas | ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplbas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | ssrab2 4009 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 | |
3 | mplval.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | mplval.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | mplval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
6 | mplval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | eqid 2738 | . . . . 5 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
8 | 3, 4, 5, 6, 7 | mplval 21107 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }) |
9 | 8, 5 | ressbas2 16875 | . . 3 ⊢ ({𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃)) |
10 | 2, 9 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃) |
11 | 1, 10 | eqtr4i 2769 | 1 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {crab 3067 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 Basecbs 16840 0gc0g 17067 mPwSer cmps 21017 mPoly cmpl 21019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-psr 21022 df-mpl 21024 |
This theorem is referenced by: mplelbas 21109 mplval2 21112 mplbasss 21113 mplsubglem2 21117 ressmplbas2 21138 mplbaspropd 21318 |
Copyright terms: Public domain | W3C validator |