![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplbas | Structured version Visualization version GIF version |
Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
mplval.z | ⊢ 0 = (0g‘𝑅) |
mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
mplbas | ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplbas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
2 | ssrab2 4078 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 | |
3 | mplval.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
4 | mplval.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
5 | mplval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
6 | mplval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
7 | eqid 2730 | . . . . 5 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
8 | 3, 4, 5, 6, 7 | mplval 21769 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }) |
9 | 8, 5 | ressbas2 17188 | . . 3 ⊢ ({𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃)) |
10 | 2, 9 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃) |
11 | 1, 10 | eqtr4i 2761 | 1 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {crab 3430 ⊆ wss 3949 class class class wbr 5149 ‘cfv 6544 (class class class)co 7413 finSupp cfsupp 9365 Basecbs 17150 0gc0g 17391 mPwSer cmps 21678 mPoly cmpl 21680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-1cn 11172 ax-addcl 11174 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-nn 12219 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-psr 21683 df-mpl 21685 |
This theorem is referenced by: mplelbas 21771 mplval2 21776 mplbasss 21777 mplsubglem2 21781 ressmplbas2 21803 mplbaspropd 21981 |
Copyright terms: Public domain | W3C validator |