| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplbas | Structured version Visualization version GIF version | ||
| Description: Base set of the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
| mplval.z | ⊢ 0 = (0g‘𝑅) |
| mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mplbas | ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplbas.u | . 2 ⊢ 𝑈 = (Base‘𝑃) | |
| 2 | ssrab2 4030 | . . 3 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 | |
| 3 | mplval.p | . . . . 5 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 4 | mplval.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 5 | mplval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
| 6 | mplval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 7 | eqid 2731 | . . . . 5 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } | |
| 8 | 3, 4, 5, 6, 7 | mplval 21924 | . . . 4 ⊢ 𝑃 = (𝑆 ↾s {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 }) |
| 9 | 8, 5 | ressbas2 17146 | . . 3 ⊢ ({𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } ⊆ 𝐵 → {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃)) |
| 10 | 2, 9 | ax-mp 5 | . 2 ⊢ {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } = (Base‘𝑃) |
| 11 | 1, 10 | eqtr4i 2757 | 1 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3395 ⊆ wss 3902 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17117 0gc0g 17340 mPwSer cmps 21839 mPoly cmpl 21841 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-psr 21844 df-mpl 21846 |
| This theorem is referenced by: mplelbas 21926 mplval2 21931 mplbasss 21932 mplsubglem2 21936 ressmplbas2 21960 mplbaspropd 22147 |
| Copyright terms: Public domain | W3C validator |