MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval2 Structured version   Visualization version   GIF version

Theorem mplval2 21912
Description: Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mplval2.p 𝑃 = (𝐼 mPoly 𝑅)
mplval2.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval2.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
mplval2 𝑃 = (𝑆s 𝑈)

Proof of Theorem mplval2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mplval2.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 mplval2.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
3 eqid 2730 . 2 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2730 . 2 (0g𝑅) = (0g𝑅)
5 mplval2.u . . 3 𝑈 = (Base‘𝑃)
61, 2, 3, 4, 5mplbas 21906 . 2 𝑈 = {𝑓 ∈ (Base‘𝑆) ∣ 𝑓 finSupp (0g𝑅)}
71, 2, 3, 4, 6mplval 21905 1 𝑃 = (𝑆s 𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  0gc0g 17409   mPwSer cmps 21820   mPoly cmpl 21822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-psr 21825  df-mpl 21827
This theorem is referenced by:  mpl0  21922  mplplusg  21923  mplmulr  21924  mplneg  21926  mpl1  21928  mplsca  21929  mplvsca2  21930  mplgrp  21933  mpllmod  21934  mplring  21935  mplcrng  21937  mplassa  21938  ressmpladd  21943  ressmplmul  21944  ressmplvsca  21945  subrgmpl  21946  mplbas2  21956  mplind  21984  evlseu  21997
  Copyright terms: Public domain W3C validator