MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplval2 Structured version   Visualization version   GIF version

Theorem mplval2 20673
Description: Self-referential expression for the set of multivariate polynomials. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mplval2.p 𝑃 = (𝐼 mPoly 𝑅)
mplval2.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval2.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
mplval2 𝑃 = (𝑆s 𝑈)

Proof of Theorem mplval2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mplval2.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 mplval2.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
3 eqid 2801 . 2 (Base‘𝑆) = (Base‘𝑆)
4 eqid 2801 . 2 (0g𝑅) = (0g𝑅)
5 mplval2.u . . 3 𝑈 = (Base‘𝑃)
61, 2, 3, 4, 5mplbas 20671 . 2 𝑈 = {𝑓 ∈ (Base‘𝑆) ∣ 𝑓 finSupp (0g𝑅)}
71, 2, 3, 4, 6mplval 20670 1 𝑃 = (𝑆s 𝑈)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  cfv 6328  (class class class)co 7139  Basecbs 16479  s cress 16480  0gc0g 16709   mPwSer cmps 20593   mPoly cmpl 20595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-nn 11630  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-psr 20598  df-mpl 20600
This theorem is referenced by:  mpl0  20683  mpladd  20684  mplneg  20685  mplmul  20686  mpl1  20687  mplsca  20688  mplvsca2  20689  mplgrp  20693  mpllmod  20694  mplring  20695  mplcrng  20697  mplassa  20698  ressmpladd  20701  ressmplmul  20702  ressmplvsca  20703  subrgmpl  20704  mplbas2  20714  mplind  20745  evlseu  20759  mplplusg  20853  mplmulr  20854
  Copyright terms: Public domain W3C validator