| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplbasss | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mplval2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval2.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplbasss.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| mplbasss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplval2.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | mplbasss.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | mplval2.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 6 | 1, 2, 3, 4, 5 | mplbas 21922 | . 2 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp (0g‘𝑅)} |
| 7 | 6 | ssrab3 4027 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 finSupp cfsupp 9240 Basecbs 17115 0gc0g 17338 mPwSer cmps 21836 mPoly cmpl 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-1cn 11059 ax-addcl 11061 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12121 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-psr 21841 df-mpl 21843 |
| This theorem is referenced by: mplelf 21930 mplsubrglem 21936 mpladd 21941 mplneg 21942 mplmul 21943 mplvsca 21947 ressmpladd 21959 ressmplmul 21960 ressmplvsca 21961 mplbas2 21972 psdmplcl 22072 ply1bas 22102 ply1basOLD 22103 ply1ass23l 22134 mplvrpmrhm 33569 |
| Copyright terms: Public domain | W3C validator |