| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplbasss | Structured version Visualization version GIF version | ||
| Description: The set of polynomials is a subset of the set of power series. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mplval2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval2.u | ⊢ 𝑈 = (Base‘𝑃) |
| mplbasss.b | ⊢ 𝐵 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| mplbasss | ⊢ 𝑈 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplval2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | mplval2.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 3 | mplbasss.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 4 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 5 | mplval2.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 6 | 1, 2, 3, 4, 5 | mplbas 21875 | . 2 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp (0g‘𝑅)} |
| 7 | 6 | ssrab3 4041 | 1 ⊢ 𝑈 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 finSupp cfsupp 9288 Basecbs 17155 0gc0g 17378 mPwSer cmps 21789 mPoly cmpl 21791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-1cn 11102 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-psr 21794 df-mpl 21796 |
| This theorem is referenced by: mplelf 21883 mplsubrglem 21889 mpladd 21894 mplneg 21895 mplmul 21896 mplvsca 21900 ressmpladd 21912 ressmplmul 21913 ressmplvsca 21914 mplbas2 21925 psdmplcl 22025 ply1bas 22055 ply1basOLD 22056 ply1ass23l 22087 |
| Copyright terms: Public domain | W3C validator |