MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplelbas Structured version   Visualization version   GIF version

Theorem mplelbas 21951
Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.)
Hypotheses
Ref Expression
mplval.p 𝑃 = (𝐼 mPoly 𝑅)
mplval.s 𝑆 = (𝐼 mPwSer 𝑅)
mplval.b 𝐵 = (Base‘𝑆)
mplval.z 0 = (0g𝑅)
mplbas.u 𝑈 = (Base‘𝑃)
Assertion
Ref Expression
mplelbas (𝑋𝑈 ↔ (𝑋𝐵𝑋 finSupp 0 ))

Proof of Theorem mplelbas
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 breq1 5122 . 2 (𝑓 = 𝑋 → (𝑓 finSupp 0𝑋 finSupp 0 ))
2 mplval.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
3 mplval.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
4 mplval.b . . 3 𝐵 = (Base‘𝑆)
5 mplval.z . . 3 0 = (0g𝑅)
6 mplbas.u . . 3 𝑈 = (Base‘𝑃)
72, 3, 4, 5, 6mplbas 21950 . 2 𝑈 = {𝑓𝐵𝑓 finSupp 0 }
81, 7elrab2 3674 1 (𝑋𝑈 ↔ (𝑋𝐵𝑋 finSupp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405   finSupp cfsupp 9373  Basecbs 17228  0gc0g 17453   mPwSer cmps 21864   mPoly cmpl 21866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-psr 21869  df-mpl 21871
This theorem is referenced by:  mvrcl  21952  mplelsfi  21955  mplsubrglem  21964  mplsubrg  21965  mplmon  21993  mplcoe1  21995  mplbas2  22000  psdmplcl  22100  mhmcompl  22318  fply1  33571  evlsbagval  42589  mhpind  42617
  Copyright terms: Public domain W3C validator