![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplelbas | Structured version Visualization version GIF version |
Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
Ref | Expression |
---|---|
mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
mplval.z | ⊢ 0 = (0g‘𝑅) |
mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
Ref | Expression |
---|---|
mplelbas | ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4932 | . 2 ⊢ (𝑓 = 𝑋 → (𝑓 finSupp 0 ↔ 𝑋 finSupp 0 )) | |
2 | mplval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
3 | mplval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
4 | mplval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
5 | mplval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
6 | mplbas.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
7 | 2, 3, 4, 5, 6 | mplbas 19923 | . 2 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
8 | 1, 7 | elrab2 3599 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 finSupp cfsupp 8628 Basecbs 16339 0gc0g 16569 mPwSer cmps 19845 mPoly cmpl 19847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-1cn 10393 ax-addcl 10395 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-nn 11440 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-psr 19850 df-mpl 19852 |
This theorem is referenced by: mplsubrglem 19933 mplsubrg 19934 mvrcl 19943 mplmon 19957 mplcoe1 19959 mplbas2 19964 mplelsfi 19984 mhpinvcl 20045 fply1 30610 |
Copyright terms: Public domain | W3C validator |