| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplelbas | Structured version Visualization version GIF version | ||
| Description: Property of being a polynomial. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 25-Jun-2019.) |
| Ref | Expression |
|---|---|
| mplval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| mplval.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| mplval.b | ⊢ 𝐵 = (Base‘𝑆) |
| mplval.z | ⊢ 0 = (0g‘𝑅) |
| mplbas.u | ⊢ 𝑈 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| mplelbas | ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5122 | . 2 ⊢ (𝑓 = 𝑋 → (𝑓 finSupp 0 ↔ 𝑋 finSupp 0 )) | |
| 2 | mplval.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | mplval.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 4 | mplval.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | mplval.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 6 | mplbas.u | . . 3 ⊢ 𝑈 = (Base‘𝑃) | |
| 7 | 2, 3, 4, 5, 6 | mplbas 21950 | . 2 ⊢ 𝑈 = {𝑓 ∈ 𝐵 ∣ 𝑓 finSupp 0 } |
| 8 | 1, 7 | elrab2 3674 | 1 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 finSupp 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 finSupp cfsupp 9373 Basecbs 17228 0gc0g 17453 mPwSer cmps 21864 mPoly cmpl 21866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-psr 21869 df-mpl 21871 |
| This theorem is referenced by: mvrcl 21952 mplelsfi 21955 mplsubrglem 21964 mplsubrg 21965 mplmon 21993 mplcoe1 21995 mplbas2 22000 psdmplcl 22100 mhmcompl 22318 fply1 33571 evlsbagval 42589 mhpind 42617 |
| Copyright terms: Public domain | W3C validator |