Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1539
∈ wcel 2104 Vcvv 3472
∩ cin 3946 ⊆
wss 3947 ‘cfv 6542
(class class class)co 7411 Basecbs 17148
↾s cress 17177 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 |
This theorem is referenced by: rescbas
17780 rescbasOLD
17781 fullresc
17805 resssetc
18046 yoniso
18242 issstrmgm
18578 gsumress
18607 issubmgm2
18628 submgmbas
18634 resmgmhm
18636 issubmnd
18686 ress0g
18687 submnd0
18688 submbas
18731 resmhm
18737 resgrpplusfrn
18872 subgbas
19046 issubg2
19057 resghm
19146 symgbas
19279 finodsubmsubg
19476 submod
19478 cntrcmnd
19751 ringidss
20165 unitgrpbas
20273 isdrng2
20514 drngmcl
20517 drngid2
20521 isdrngd
20533 isdrngdOLD
20535 sdrgbas
20553 cntzsdrg
20561 subdrgint
20562 primefld
20564 islss3
20714 lsslss
20716 lsslsp
20770 reslmhm
20807 2idlbas
21018 rng2idl1cntr
21064 xrs1mnd
21183 xrs10
21184 xrs1cmn
21185 xrge0subm
21186 xrge0cmn
21187 cnmsubglem
21208 nn0srg
21215 rge0srg
21216 zringbas
21224 expghm
21246 cnmsgnbas
21350 psgnghm
21352 rebase
21378 dsmmbase
21509 dsmmval2
21510 lsslindf
21604 lsslinds
21605 islinds3
21608 resspsrbas
21754 mplbas
21768 ressmplbas
21802 evlssca
21871 mpfconst
21883 mpfind
21889 ply1bas
21938 ressply1bas
21971 evls1sca
22062 m2cpmrngiso
22480 ressusp
23989 imasdsf1olem
24099 xrge0gsumle
24569 xrge0tsms
24570 cmssmscld
25098 cmsss
25099 minveclem3a
25175 efabl
26295 efsubm
26296 qrngbas
27358 ressplusf
32394 ressnm
32395 ressprs
32400 ressmulgnn
32451 ressmulgnn0
32452 xrge0tsmsd
32479 ress1r
32653 xrge0slmod
32733 fermltlchr
32752 znfermltl
32753 evls1fpws
32920 evls1vsca
32924 asclply1subcl
32934 resssra
32962 drgextlsp
32968 lssdimle
32980 lbslsat
32989 ply1degltdimlem
32995 ply1degltdim
32996 dimkerim
33000 fedgmullem1
33002 fedgmullem2
33003 fedgmul
33004 evls1fldgencl
33033 0ringirng
33042 evls1maplmhm
33049 algextdeglem3
33064 algextdeglem4
33065 algextdeglem8
33069 rspecbas
33143 prsssdm
33195 ordtrestNEW
33199 ordtrest2NEW
33201 xrge0iifmhm
33217 esumpfinvallem
33370 sitgaddlemb
33645 prdsbnd2
36966 cnpwstotbnd
36968 repwsmet
37005 rrnequiv
37006 lcdvbase
40767 islssfg
42114 lnmlsslnm
42125 pwssplit4
42133 deg1mhm
42251 gsumge0cl
45385 sge0tsms
45394 cnfldsrngbas
46837 amgmlemALT
47937 |