Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbas2 | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas2 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3919 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
3 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
4 | 3 | fvexi 6844 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | ssex 5270 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
6 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
7 | 6, 3 | ressbas 17045 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 2, 8 | eqtr3d 2779 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ∩ cin 3901 ⊆ wss 3902 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 ↾s cress 17039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-1cn 11035 ax-addcl 11037 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-nn 12080 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 |
This theorem is referenced by: rescbas 17639 rescbasOLD 17640 fullresc 17664 resssetc 17905 yoniso 18101 issstrmgm 18435 gsumress 18464 issubmnd 18510 ress0g 18511 submnd0 18512 submbas 18551 resmhm 18557 resgrpplusfrn 18690 subgbas 18856 issubg2 18867 resghm 18947 symgbas 19075 submod 19271 cntrcmnd 19539 ringidss 19911 unitgrpbas 20003 isdrng2 20106 drngmcl 20109 drngid2 20112 isdrngd 20121 cntzsdrg 20176 subdrgint 20177 primefld 20179 islss3 20327 lsslss 20329 lsslsp 20383 reslmhm 20420 xrs1mnd 20742 xrs10 20743 xrs1cmn 20744 xrge0subm 20745 xrge0cmn 20746 cnmsubglem 20767 nn0srg 20774 rge0srg 20775 zringbas 20782 expghm 20803 cnmsgnbas 20889 psgnghm 20891 rebase 20917 dsmmbase 21048 dsmmval2 21049 lsslindf 21143 lsslinds 21144 islinds3 21147 resspsrbas 21290 mplbas 21304 ressmplbas 21335 evlssca 21405 mpfconst 21417 mpfind 21423 ply1bas 21472 ressply1bas 21506 evls1sca 21595 m2cpmrngiso 22013 ressusp 23522 imasdsf1olem 23632 xrge0gsumle 24102 xrge0tsms 24103 cmssmscld 24620 cmsss 24621 minveclem3a 24697 efabl 25812 efsubm 25813 qrngbas 26873 ressplusf 31520 ressnm 31521 ressprs 31526 ressmulgnn 31577 ressmulgnn0 31578 xrge0tsmsd 31602 ress1r 31771 xrge0slmod 31842 fermltlchr 31856 znfermltl 31857 drgextlsp 31977 lssdimle 31987 lbslsat 31995 dimkerim 32004 fedgmullem1 32006 fedgmullem2 32007 fedgmul 32008 rspecbas 32111 prsssdm 32163 ordtrestNEW 32167 ordtrest2NEW 32169 xrge0iifmhm 32185 esumpfinvallem 32338 sitgaddlemb 32613 prdsbnd2 36107 cnpwstotbnd 36109 repwsmet 36146 rrnequiv 36147 lcdvbase 39910 selvval2lem4 40531 islssfg 41207 lnmlsslnm 41218 pwssplit4 41226 deg1mhm 41344 gsumge0cl 44296 sge0tsms 44305 cnfldsrngbas 45739 issubmgm2 45760 submgmbas 45766 resmgmhm 45768 amgmlemALT 46923 |
Copyright terms: Public domain | W3C validator |