Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1540
∈ wcel 2105 Vcvv 3473
∩ cin 3947 ⊆
wss 3948 ‘cfv 6543
(class class class)co 7412 Basecbs 17149
↾s cress 17178 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912
ax-6 1970 ax-7 2010 ax-8 2107
ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-1cn 11171 ax-addcl 11173 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-nn 12218 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 |
This theorem is referenced by: rescbas
17781 rescbasOLD
17782 fullresc
17806 resssetc
18047 yoniso
18243 issstrmgm
18579 gsumress
18608 issubmgm2
18629 submgmbas
18635 resmgmhm
18637 issubmnd
18687 ress0g
18688 submnd0
18689 submbas
18732 resmhm
18738 resgrpplusfrn
18873 subgbas
19047 issubg2
19058 resghm
19147 symgbas
19280 finodsubmsubg
19477 submod
19479 cntrcmnd
19752 ringidss
20166 unitgrpbas
20274 isdrng2
20515 drngmcl
20518 drngid2
20522 isdrngd
20534 isdrngdOLD
20536 sdrgbas
20554 cntzsdrg
20562 subdrgint
20563 primefld
20565 islss3
20715 lsslss
20717 lsslsp
20771 reslmhm
20808 2idlbas
21019 rng2idl1cntr
21065 xrs1mnd
21184 xrs10
21185 xrs1cmn
21186 xrge0subm
21187 xrge0cmn
21188 cnmsubglem
21209 nn0srg
21216 rge0srg
21217 zringbas
21225 expghm
21247 cnmsgnbas
21351 psgnghm
21353 rebase
21379 dsmmbase
21510 dsmmval2
21511 lsslindf
21605 lsslinds
21606 islinds3
21609 resspsrbas
21755 mplbas
21769 ressmplbas
21803 evlssca
21872 mpfconst
21884 mpfind
21890 ply1bas
21939 ressply1bas
21972 evls1sca
22063 m2cpmrngiso
22481 ressusp
23990 imasdsf1olem
24100 xrge0gsumle
24570 xrge0tsms
24571 cmssmscld
25099 cmsss
25100 minveclem3a
25176 efabl
26296 efsubm
26297 qrngbas
27359 ressplusf
32395 ressnm
32396 ressprs
32401 ressmulgnn
32452 ressmulgnn0
32453 xrge0tsmsd
32480 ress1r
32654 xrge0slmod
32734 fermltlchr
32753 znfermltl
32754 evls1fpws
32921 evls1vsca
32925 asclply1subcl
32935 resssra
32963 drgextlsp
32969 lssdimle
32981 lbslsat
32990 ply1degltdimlem
32996 ply1degltdim
32997 dimkerim
33001 fedgmullem1
33003 fedgmullem2
33004 fedgmul
33005 evls1fldgencl
33034 0ringirng
33043 evls1maplmhm
33050 algextdeglem3
33065 algextdeglem4
33066 algextdeglem8
33070 rspecbas
33144 prsssdm
33196 ordtrestNEW
33200 ordtrest2NEW
33202 xrge0iifmhm
33218 esumpfinvallem
33371 sitgaddlemb
33646 prdsbnd2
36967 cnpwstotbnd
36969 repwsmet
37006 rrnequiv
37007 lcdvbase
40768 islssfg
42115 lnmlsslnm
42126 pwssplit4
42134 deg1mhm
42252 gsumge0cl
45386 sge0tsms
45395 cnfldsrngbas
46838 amgmlemALT
47938 |