Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbas2 | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas2 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3904 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
3 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
4 | 3 | fvexi 6788 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | ssex 5245 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
6 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
7 | 6, 3 | ressbas 16947 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 2, 8 | eqtr3d 2780 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 |
This theorem is referenced by: rescbas 17541 rescbasOLD 17542 fullresc 17566 resssetc 17807 yoniso 18003 issstrmgm 18337 gsumress 18366 issubmnd 18412 ress0g 18413 submnd0 18414 submbas 18453 resmhm 18459 resgrpplusfrn 18593 subgbas 18759 issubg2 18770 resghm 18850 symgbas 18978 submod 19174 cntrcmnd 19443 ringidss 19816 unitgrpbas 19908 isdrng2 20001 drngmcl 20004 drngid2 20007 isdrngd 20016 cntzsdrg 20070 subdrgint 20071 primefld 20073 islss3 20221 lsslss 20223 lsslsp 20277 reslmhm 20314 xrs1mnd 20636 xrs10 20637 xrs1cmn 20638 xrge0subm 20639 xrge0cmn 20640 cnmsubglem 20661 nn0srg 20668 rge0srg 20669 zringbas 20676 expghm 20697 cnmsgnbas 20783 psgnghm 20785 rebase 20811 dsmmbase 20942 dsmmval2 20943 lsslindf 21037 lsslinds 21038 islinds3 21041 resspsrbas 21184 mplbas 21198 ressmplbas 21229 evlssca 21299 mpfconst 21311 mpfind 21317 ply1bas 21366 ressply1bas 21400 evls1sca 21489 m2cpmrngiso 21907 ressusp 23416 imasdsf1olem 23526 xrge0gsumle 23996 xrge0tsms 23997 cmssmscld 24514 cmsss 24515 minveclem3a 24591 efabl 25706 efsubm 25707 qrngbas 26767 ressplusf 31235 ressnm 31236 ressprs 31241 ressmulgnn 31292 ressmulgnn0 31293 xrge0tsmsd 31317 ress1r 31486 xrge0slmod 31548 znfermltl 31562 drgextlsp 31681 lssdimle 31691 lbslsat 31699 dimkerim 31708 fedgmullem1 31710 fedgmullem2 31711 fedgmul 31712 rspecbas 31815 prsssdm 31867 ordtrestNEW 31871 ordtrest2NEW 31873 xrge0iifmhm 31889 esumpfinvallem 32042 sitgaddlemb 32315 prdsbnd2 35953 cnpwstotbnd 35955 repwsmet 35992 rrnequiv 35993 lcdvbase 39607 selvval2lem4 40228 islssfg 40895 lnmlsslnm 40906 pwssplit4 40914 deg1mhm 41032 gsumge0cl 43909 sge0tsms 43918 cnfldsrngbas 45323 issubmgm2 45344 submgmbas 45350 resmgmhm 45352 amgmlemALT 46507 |
Copyright terms: Public domain | W3C validator |