Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressbas2 | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas2 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3900 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
3 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
4 | 3 | fvexi 6770 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | ssex 5240 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
6 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
7 | 6, 3 | ressbas 16873 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 2, 8 | eqtr3d 2780 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-1cn 10860 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-nn 11904 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 |
This theorem is referenced by: rescbas 17458 rescbasOLD 17459 fullresc 17482 resssetc 17723 yoniso 17919 issstrmgm 18252 gsumress 18281 issubmnd 18327 ress0g 18328 submnd0 18329 submbas 18368 resmhm 18374 resgrpplusfrn 18508 subgbas 18674 issubg2 18685 resghm 18765 symgbas 18893 submod 19089 cntrcmnd 19358 ringidss 19731 unitgrpbas 19823 isdrng2 19916 drngmcl 19919 drngid2 19922 isdrngd 19931 cntzsdrg 19985 subdrgint 19986 primefld 19988 islss3 20136 lsslss 20138 lsslsp 20192 reslmhm 20229 xrs1mnd 20548 xrs10 20549 xrs1cmn 20550 xrge0subm 20551 xrge0cmn 20552 cnmsubglem 20573 nn0srg 20580 rge0srg 20581 zringbas 20588 expghm 20609 cnmsgnbas 20695 psgnghm 20697 rebase 20723 dsmmbase 20852 dsmmval2 20853 lsslindf 20947 lsslinds 20948 islinds3 20951 resspsrbas 21094 mplbas 21108 ressmplbas 21139 evlssca 21209 mpfconst 21221 mpfind 21227 ply1bas 21276 ressply1bas 21310 evls1sca 21399 m2cpmrngiso 21815 ressusp 23324 imasdsf1olem 23434 xrge0gsumle 23902 xrge0tsms 23903 cmssmscld 24419 cmsss 24420 minveclem3a 24496 efabl 25611 efsubm 25612 qrngbas 26672 ressplusf 31137 ressnm 31138 ressprs 31143 ressmulgnn 31194 ressmulgnn0 31195 xrge0tsmsd 31219 ress1r 31388 xrge0slmod 31450 znfermltl 31464 drgextlsp 31583 lssdimle 31593 lbslsat 31601 dimkerim 31610 fedgmullem1 31612 fedgmullem2 31613 fedgmul 31614 rspecbas 31717 prsssdm 31769 ordtrestNEW 31773 ordtrest2NEW 31775 xrge0iifmhm 31791 esumpfinvallem 31942 sitgaddlemb 32215 prdsbnd2 35880 cnpwstotbnd 35882 repwsmet 35919 rrnequiv 35920 lcdvbase 39534 selvval2lem4 40154 islssfg 40811 lnmlsslnm 40822 pwssplit4 40830 deg1mhm 40948 gsumge0cl 43799 sge0tsms 43808 cnfldsrngbas 45211 issubmgm2 45232 submgmbas 45238 resmgmhm 45240 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |