![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressbas2 | Structured version Visualization version GIF version |
Description: Base set of a structure restriction. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
ressbas.r | ⊢ 𝑅 = (𝑊 ↾s 𝐴) |
ressbas.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
ressbas2 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3844 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | 1 | biimpi 208 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
3 | ressbas.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
4 | 3 | fvexi 6513 | . . . 4 ⊢ 𝐵 ∈ V |
5 | 4 | ssex 5081 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
6 | ressbas.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾s 𝐴) | |
7 | 6, 3 | ressbas 16410 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
8 | 5, 7 | syl 17 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐵) = (Base‘𝑅)) |
9 | 2, 8 | eqtr3d 2817 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∩ cin 3829 ⊆ wss 3830 ‘cfv 6188 (class class class)co 6976 Basecbs 16339 ↾s cress 16340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-1cn 10393 ax-addcl 10395 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-nn 11440 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 |
This theorem is referenced by: rescbas 16957 fullresc 16979 resssetc 17210 yoniso 17393 issstrmgm 17720 gsumress 17744 issubmnd 17786 ress0g 17787 submnd0 17788 submbas 17823 resmhm 17827 resgrpplusfrn 17905 subgbas 18067 issubg2 18078 resghm 18145 submod 18455 ringidss 19050 unitgrpbas 19139 isdrng2 19235 drngmcl 19238 drngid2 19241 isdrngd 19250 cntzsdrg 19303 subdrgint 19304 primefld 19306 islss3 19453 lsslss 19455 lsslsp 19509 reslmhm 19546 issubassa 19818 resspsrbas 19909 mplbas 19923 ressmplbas 19950 evlssca 20015 mpfconst 20023 mpfind 20029 ply1bas 20066 ressply1bas 20100 evls1sca 20189 xrs1mnd 20285 xrs10 20286 xrs1cmn 20287 xrge0subm 20288 xrge0cmn 20289 cnmsubglem 20310 nn0srg 20317 rge0srg 20318 zringbas 20325 expghm 20345 cnmsgnbas 20424 psgnghm 20426 rebase 20452 dsmmbase 20581 dsmmval2 20582 lsslindf 20676 lsslinds 20677 islinds3 20680 m2cpmrngiso 21070 ressusp 22577 imasdsf1olem 22686 xrge0gsumle 23144 xrge0tsms 23145 cmssmscld 23656 cmsss 23657 minveclem3a 23733 efabl 24835 efsubm 24836 qrngbas 25897 ressplusf 30366 ressnm 30367 ressprs 30371 ressmulgnn 30399 ressmulgnn0 30400 xrge0tsmsd 30527 cntrcmnd 30530 ress1r 30536 xrge0slmod 30593 drgextlsp 30622 lssdimle 30632 lbslsat 30640 dimkerim 30649 fedgmullem1 30651 fedgmullem2 30652 fedgmul 30653 prsssdm 30801 ordtrestNEW 30805 ordtrest2NEW 30807 xrge0iifmhm 30823 esumpfinvallem 30974 sitgaddlemb 31248 prdsbnd2 34512 cnpwstotbnd 34514 repwsmet 34551 rrnequiv 34552 lcdvbase 38171 islssfg 39063 lnmlsslnm 39074 pwssplit4 39082 deg1mhm 39200 gsumge0cl 42082 sge0tsms 42091 cnfldsrngbas 43402 issubmgm2 43423 submgmbas 43429 resmgmhm 43431 amgmlemALT 44269 |
Copyright terms: Public domain | W3C validator |