Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 Vcvv 3474
∩ cin 3946 ⊆
wss 3947 ‘cfv 6540
(class class class)co 7405 Basecbs 17140
↾s cress 17169 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-nn 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 |
This theorem is referenced by: rescbas
17772 rescbasOLD
17773 fullresc
17797 resssetc
18038 yoniso
18234 issstrmgm
18568 gsumress
18597 issubmnd
18648 ress0g
18649 submnd0
18650 submbas
18691 resmhm
18697 resgrpplusfrn
18832 subgbas
19004 issubg2
19015 resghm
19102 symgbas
19232 finodsubmsubg
19429 submod
19431 cntrcmnd
19704 ringidss
20087 unitgrpbas
20188 isdrng2
20321 drngmcl
20324 drngid2
20328 isdrngd
20340 isdrngdOLD
20342 sdrgbas
20402 cntzsdrg
20410 subdrgint
20411 primefld
20413 islss3
20562 lsslss
20564 lsslsp
20618 reslmhm
20655 2idlbas
20861 xrs1mnd
20975 xrs10
20976 xrs1cmn
20977 xrge0subm
20978 xrge0cmn
20979 cnmsubglem
21000 nn0srg
21007 rge0srg
21008 zringbas
21015 expghm
21036 cnmsgnbas
21122 psgnghm
21124 rebase
21150 dsmmbase
21281 dsmmval2
21282 lsslindf
21376 lsslinds
21377 islinds3
21380 resspsrbas
21526 mplbas
21540 ressmplbas
21574 evlssca
21643 mpfconst
21655 mpfind
21661 ply1bas
21710 ressply1bas
21742 evls1sca
21833 m2cpmrngiso
22251 ressusp
23760 imasdsf1olem
23870 xrge0gsumle
24340 xrge0tsms
24341 cmssmscld
24858 cmsss
24859 minveclem3a
24935 efabl
26050 efsubm
26051 qrngbas
27111 ressplusf
32114 ressnm
32115 ressprs
32120 ressmulgnn
32171 ressmulgnn0
32172 xrge0tsmsd
32196 ress1r
32371 xrge0slmod
32451 fermltlchr
32466 znfermltl
32467 evls1fpws
32634 evls1vsca
32638 asclply1subcl
32648 drgextlsp
32669 lssdimle
32680 lbslsat
32689 ply1degltdimlem
32695 ply1degltdim
32696 dimkerim
32700 fedgmullem1
32702 fedgmullem2
32703 fedgmul
32704 0ringirng
32741 evls1maplmhm
32748 algextdeglem1
32760 rspecbas
32833 prsssdm
32885 ordtrestNEW
32889 ordtrest2NEW
32891 xrge0iifmhm
32907 esumpfinvallem
33060 sitgaddlemb
33335 prdsbnd2
36651 cnpwstotbnd
36653 repwsmet
36690 rrnequiv
36691 lcdvbase
40452 islssfg
41797 lnmlsslnm
41808 pwssplit4
41816 deg1mhm
41934 gsumge0cl
45073 sge0tsms
45082 cnfldsrngbas
46525 issubmgm2
46546 submgmbas
46552 resmgmhm
46554 rng2idl1cntr
46770 amgmlemALT
47803 |