MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mullt0 Structured version   Visualization version   GIF version

Theorem mullt0 11704
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
Assertion
Ref Expression
mullt0 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))

Proof of Theorem mullt0
StepHypRef Expression
1 renegcl 11492 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
21adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
3 lt0neg1 11691 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
43biimpa 476 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴)
52, 4jca 511 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
6 renegcl 11492 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
76adantr 480 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → -𝐵 ∈ ℝ)
8 lt0neg1 11691 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 0 ↔ 0 < -𝐵))
98biimpa 476 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → 0 < -𝐵)
107, 9jca 511 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → (-𝐵 ∈ ℝ ∧ 0 < -𝐵))
11 mulgt0 11258 . . 3 (((-𝐴 ∈ ℝ ∧ 0 < -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → 0 < (-𝐴 · -𝐵))
125, 10, 11syl2an 596 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (-𝐴 · -𝐵))
13 recn 11165 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 recn 11165 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 mul2neg 11624 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1613, 14, 15syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1716ad2ant2r 747 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1812, 17breqtrd 5136 1 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080   < clt 11215  -cneg 11413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415
This theorem is referenced by:  msqgt0  11705
  Copyright terms: Public domain W3C validator