![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. The weak deduction theorem dedth 4587 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11521, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11452 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
2 | 1 | eleq1d 2819 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
3 | 1re 11214 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 3 | elimel 4598 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
5 | 4 | renegcli 11521 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
6 | 2, 5 | dedth 4587 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ifcif 4529 ℝcr 11109 1c1 11111 -cneg 11445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 |
This theorem is referenced by: resubcl 11524 negreb 11525 renegcld 11641 negn0 11643 negf1o 11644 ltnegcon1 11715 ltnegcon2 11716 lenegcon1 11718 lenegcon2 11719 mullt0 11733 mulge0b 12084 mulle0b 12085 negfi 12163 infm3lem 12172 infm3 12173 riotaneg 12193 elnnz 12568 btwnz 12665 ublbneg 12917 supminf 12919 uzwo3 12927 zmax 12929 rebtwnz 12931 rpneg 13006 negelrp 13007 max0sub 13175 xnegcl 13192 xnegneg 13193 xltnegi 13195 rexsub 13212 xnegid 13217 xnegdi 13227 xpncan 13230 xnpcan 13231 xadddi 13274 iooneg 13448 iccneg 13449 icoshftf1o 13451 dfceil2 13804 ceicl 13806 ceige 13809 ceim1l 13812 negmod0 13843 negmod 13881 addmodlteq 13911 crim 15062 cnpart 15187 sqrtneglem 15213 absnid 15245 max0add 15257 absdiflt 15264 absdifle 15265 sqreulem 15306 resinhcl 16099 rpcoshcl 16100 tanhlt1 16103 tanhbnd 16104 remulg 21160 resubdrg 21161 cnheiborlem 24470 evth2 24476 ismbf3d 25171 mbfinf 25182 itgconst 25336 reeff1o 25959 atanbnd 26431 sgnneg 33570 ltflcei 36524 cos2h 36527 iblabsnclem 36599 ftc1anclem1 36609 areacirclem2 36625 areacirclem3 36626 areacirc 36629 mulltgt0 43754 rexabslelem 44176 xnegrecl 44196 supminfrnmpt 44203 supminfxr 44222 limsupre 44405 climinf3 44480 liminfreuzlem 44566 stoweidlem10 44774 etransclem46 45044 smfinflem 45581 finfdm 45610 line2 47486 |
Copyright terms: Public domain | W3C validator |