Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. The weak deduction theorem dedth 4535 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11387, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11318 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
2 | 1 | eleq1d 2822 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
3 | 1re 11080 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 3 | elimel 4546 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
5 | 4 | renegcli 11387 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
6 | 2, 5 | dedth 4535 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ifcif 4477 ℝcr 10975 1c1 10977 -cneg 11311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-po 5536 df-so 5537 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-pnf 11116 df-mnf 11117 df-ltxr 11119 df-sub 11312 df-neg 11313 |
This theorem is referenced by: resubcl 11390 negreb 11391 renegcld 11507 negn0 11509 negf1o 11510 ltnegcon1 11581 ltnegcon2 11582 lenegcon1 11584 lenegcon2 11585 mullt0 11599 mulge0b 11950 mulle0b 11951 negfi 12029 infm3lem 12038 infm3 12039 riotaneg 12059 elnnz 12434 btwnz 12528 ublbneg 12778 supminf 12780 uzwo3 12788 zmax 12790 rebtwnz 12792 rpneg 12867 negelrp 12868 max0sub 13035 xnegcl 13052 xnegneg 13053 xltnegi 13055 rexsub 13072 xnegid 13077 xnegdi 13087 xpncan 13090 xnpcan 13091 xadddi 13134 iooneg 13308 iccneg 13309 icoshftf1o 13311 dfceil2 13664 ceicl 13666 ceige 13669 ceim1l 13672 negmod0 13703 negmod 13741 addmodlteq 13771 crim 14925 cnpart 15050 sqrtneglem 15077 absnid 15109 max0add 15121 absdiflt 15128 absdifle 15129 sqreulem 15170 resinhcl 15964 rpcoshcl 15965 tanhlt1 15968 tanhbnd 15969 remulg 20917 resubdrg 20918 cnheiborlem 24222 evth2 24228 ismbf3d 24923 mbfinf 24934 itgconst 25088 reeff1o 25711 atanbnd 26181 sgnneg 32805 ltflcei 35921 cos2h 35924 iblabsnclem 35996 ftc1anclem1 36006 areacirclem2 36022 areacirclem3 36023 areacirc 36026 mulltgt0 42938 rexabslelem 43345 xnegrecl 43365 supminfrnmpt 43372 supminfxr 43391 limsupre 43570 climinf3 43645 liminfreuzlem 43731 stoweidlem10 43939 etransclem46 44209 smfinflem 44744 line2 46516 |
Copyright terms: Public domain | W3C validator |