| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. The weak deduction theorem dedth 4550 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11490, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11420 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
| 2 | 1 | eleq1d 2814 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
| 3 | 1re 11181 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | 3 | elimel 4561 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 5 | 4 | renegcli 11490 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 6 | 2, 5 | dedth 4550 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4491 ℝcr 11074 1c1 11076 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: resubcl 11493 negreb 11494 renegcld 11612 negn0 11614 negf1o 11615 ltnegcon1 11686 ltnegcon2 11687 lenegcon1 11689 lenegcon2 11690 mullt0 11704 mulge0b 12060 mulle0b 12061 negfi 12139 infm3lem 12148 infm3 12149 riotaneg 12169 elnnz 12546 btwnz 12644 ublbneg 12899 supminf 12901 uzwo3 12909 zmax 12911 rebtwnz 12913 rpneg 12992 negelrp 12993 max0sub 13163 xnegcl 13180 xnegneg 13181 xltnegi 13183 rexsub 13200 xnegid 13205 xnegdi 13215 xpncan 13218 xnpcan 13219 xadddi 13262 iooneg 13439 iccneg 13440 icoshftf1o 13442 dfceil2 13808 ceicl 13810 ceige 13813 ceim1l 13816 negmod0 13847 modaddb 13878 negmod 13888 addmodlteq 13918 crim 15088 cnpart 15213 sqrtneglem 15239 absnid 15271 max0add 15283 absdiflt 15291 absdifle 15292 sqreulem 15333 resinhcl 16131 rpcoshcl 16132 tanhlt1 16135 tanhbnd 16136 remulg 21523 resubdrg 21524 cnheiborlem 24860 evth2 24866 ismbf3d 25562 mbfinf 25573 itgconst 25727 reeff1o 26364 atanbnd 26843 sgnneg 32765 ltflcei 37609 cos2h 37612 iblabsnclem 37684 ftc1anclem1 37694 areacirclem2 37710 areacirclem3 37711 areacirc 37714 mulltgt0 45023 rexabslelem 45421 xnegrecl 45441 supminfrnmpt 45448 supminfxr 45467 limsupre 45646 climinf3 45721 liminfreuzlem 45807 stoweidlem10 46015 etransclem46 46285 smfinflem 46822 finfdm 46851 ceilbi 47338 ceildivmod 47344 line2 48745 |
| Copyright terms: Public domain | W3C validator |