![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. The weak deduction theorem dedth 4586 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11520, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11451 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
3 | 1re 11213 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 3 | elimel 4597 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
5 | 4 | renegcli 11520 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
6 | 2, 5 | dedth 4586 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ifcif 4528 ℝcr 11108 1c1 11110 -cneg 11444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-neg 11446 |
This theorem is referenced by: resubcl 11523 negreb 11524 renegcld 11640 negn0 11642 negf1o 11643 ltnegcon1 11714 ltnegcon2 11715 lenegcon1 11717 lenegcon2 11718 mullt0 11732 mulge0b 12083 mulle0b 12084 negfi 12162 infm3lem 12171 infm3 12172 riotaneg 12192 elnnz 12567 btwnz 12664 ublbneg 12916 supminf 12918 uzwo3 12926 zmax 12928 rebtwnz 12930 rpneg 13005 negelrp 13006 max0sub 13174 xnegcl 13191 xnegneg 13192 xltnegi 13194 rexsub 13211 xnegid 13216 xnegdi 13226 xpncan 13229 xnpcan 13230 xadddi 13273 iooneg 13447 iccneg 13448 icoshftf1o 13450 dfceil2 13803 ceicl 13805 ceige 13808 ceim1l 13811 negmod0 13842 negmod 13880 addmodlteq 13910 crim 15061 cnpart 15186 sqrtneglem 15212 absnid 15244 max0add 15256 absdiflt 15263 absdifle 15264 sqreulem 15305 resinhcl 16098 rpcoshcl 16099 tanhlt1 16102 tanhbnd 16103 remulg 21159 resubdrg 21160 cnheiborlem 24469 evth2 24475 ismbf3d 25170 mbfinf 25181 itgconst 25335 reeff1o 25958 atanbnd 26428 sgnneg 33534 ltflcei 36471 cos2h 36474 iblabsnclem 36546 ftc1anclem1 36556 areacirclem2 36572 areacirclem3 36573 areacirc 36576 mulltgt0 43696 rexabslelem 44118 xnegrecl 44138 supminfrnmpt 44145 supminfxr 44164 limsupre 44347 climinf3 44422 liminfreuzlem 44508 stoweidlem10 44716 etransclem46 44986 smfinflem 45523 finfdm 45552 line2 47428 |
Copyright terms: Public domain | W3C validator |