Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. The weak deduction theorem dedth 4514 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11212, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11143 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
3 | 1re 10906 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 3 | elimel 4525 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
5 | 4 | renegcli 11212 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
6 | 2, 5 | dedth 4514 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ifcif 4456 ℝcr 10801 1c1 10803 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: resubcl 11215 negreb 11216 renegcld 11332 negn0 11334 negf1o 11335 ltnegcon1 11406 ltnegcon2 11407 lenegcon1 11409 lenegcon2 11410 mullt0 11424 mulge0b 11775 mulle0b 11776 negfi 11854 infm3lem 11863 infm3 11864 riotaneg 11884 elnnz 12259 btwnz 12352 ublbneg 12602 supminf 12604 uzwo3 12612 zmax 12614 rebtwnz 12616 rpneg 12691 negelrp 12692 max0sub 12859 xnegcl 12876 xnegneg 12877 xltnegi 12879 rexsub 12896 xnegid 12901 xnegdi 12911 xpncan 12914 xnpcan 12915 xadddi 12958 iooneg 13132 iccneg 13133 icoshftf1o 13135 dfceil2 13487 ceicl 13489 ceige 13492 ceim1l 13495 negmod0 13526 negmod 13564 addmodlteq 13594 crim 14754 cnpart 14879 sqrtneglem 14906 absnid 14938 max0add 14950 absdiflt 14957 absdifle 14958 sqreulem 14999 resinhcl 15793 rpcoshcl 15794 tanhlt1 15797 tanhbnd 15798 remulg 20724 resubdrg 20725 cnheiborlem 24023 evth2 24029 ismbf3d 24723 mbfinf 24734 itgconst 24888 reeff1o 25511 atanbnd 25981 sgnneg 32407 ltflcei 35692 cos2h 35695 iblabsnclem 35767 ftc1anclem1 35777 areacirclem2 35793 areacirclem3 35794 areacirc 35797 mulltgt0 42454 rexabslelem 42848 xnegrecl 42868 supminfrnmpt 42875 supminfxr 42894 limsupre 43072 climinf3 43147 liminfreuzlem 43233 stoweidlem10 43441 etransclem46 43711 smfinflem 44237 line2 45986 |
Copyright terms: Public domain | W3C validator |