![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. The weak deduction theorem dedth 4363 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 10684, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 10614 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
2 | 1 | eleq1d 2844 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
3 | 1re 10376 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 3 | elimel 4374 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
5 | 4 | renegcli 10684 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
6 | 2, 5 | dedth 4363 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ifcif 4307 ℝcr 10271 1c1 10273 -cneg 10607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 |
This theorem is referenced by: resubcl 10687 negreb 10688 renegcld 10802 negn0 10804 negf1o 10805 ltnegcon1 10876 ltnegcon2 10877 lenegcon1 10879 lenegcon2 10880 mullt0 10894 mulge0b 11247 mulle0b 11248 negfi 11325 fiminre 11326 infm3lem 11335 infm3 11336 riotaneg 11356 elnnz 11738 btwnz 11831 ublbneg 12080 supminf 12082 uzwo3 12090 zmax 12092 rebtwnz 12094 rpneg 12171 negelrp 12172 max0sub 12339 xnegcl 12356 xnegneg 12357 xltnegi 12359 rexsub 12376 xnegid 12381 xnegdi 12390 xpncan 12393 xnpcan 12394 xadddi 12437 iooneg 12607 iccneg 12608 icoshftf1o 12610 dfceil2 12959 ceicl 12961 ceige 12963 ceim1l 12965 negmod0 12996 negmod 13034 addmodlteq 13064 crim 14262 cnpart 14387 sqrtneglem 14414 absnid 14445 max0add 14457 absdiflt 14464 absdifle 14465 sqreulem 14506 resinhcl 15288 rpcoshcl 15289 tanhlt1 15292 tanhbnd 15293 remulg 20350 resubdrg 20351 cnheiborlem 23161 evth2 23167 ismbf3d 23858 mbfinf 23869 itgconst 24022 reeff1o 24638 atanbnd 25104 sgnneg 31201 ltflcei 34024 cos2h 34027 iblabsnclem 34100 ftc1anclem1 34112 areacirclem2 34128 areacirclem3 34129 areacirc 34132 mulltgt0 40118 rexabslelem 40555 xnegrecl 40575 supminfrnmpt 40582 supminfxr 40603 limsupre 40785 climinf3 40860 liminfreuzlem 40946 stoweidlem10 41158 etransclem46 41428 smfinflem 41954 line2 43492 |
Copyright terms: Public domain | W3C validator |