Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version |
Description: Closure law for negative of reals. The weak deduction theorem dedth 4518 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11291, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negeq 11222 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
3 | 1re 10984 | . . . 4 ⊢ 1 ∈ ℝ | |
4 | 3 | elimel 4529 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
5 | 4 | renegcli 11291 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
6 | 2, 5 | dedth 4518 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ifcif 4460 ℝcr 10879 1c1 10881 -cneg 11215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 df-neg 11217 |
This theorem is referenced by: resubcl 11294 negreb 11295 renegcld 11411 negn0 11413 negf1o 11414 ltnegcon1 11485 ltnegcon2 11486 lenegcon1 11488 lenegcon2 11489 mullt0 11503 mulge0b 11854 mulle0b 11855 negfi 11933 infm3lem 11942 infm3 11943 riotaneg 11963 elnnz 12338 btwnz 12432 ublbneg 12682 supminf 12684 uzwo3 12692 zmax 12694 rebtwnz 12696 rpneg 12771 negelrp 12772 max0sub 12939 xnegcl 12956 xnegneg 12957 xltnegi 12959 rexsub 12976 xnegid 12981 xnegdi 12991 xpncan 12994 xnpcan 12995 xadddi 13038 iooneg 13212 iccneg 13213 icoshftf1o 13215 dfceil2 13568 ceicl 13570 ceige 13573 ceim1l 13576 negmod0 13607 negmod 13645 addmodlteq 13675 crim 14835 cnpart 14960 sqrtneglem 14987 absnid 15019 max0add 15031 absdiflt 15038 absdifle 15039 sqreulem 15080 resinhcl 15874 rpcoshcl 15875 tanhlt1 15878 tanhbnd 15879 remulg 20821 resubdrg 20822 cnheiborlem 24126 evth2 24132 ismbf3d 24827 mbfinf 24838 itgconst 24992 reeff1o 25615 atanbnd 26085 sgnneg 32516 ltflcei 35774 cos2h 35777 iblabsnclem 35849 ftc1anclem1 35859 areacirclem2 35875 areacirclem3 35876 areacirc 35879 mulltgt0 42572 rexabslelem 42965 xnegrecl 42985 supminfrnmpt 42992 supminfxr 43011 limsupre 43189 climinf3 43264 liminfreuzlem 43350 stoweidlem10 43558 etransclem46 43828 smfinflem 44361 line2 46109 |
Copyright terms: Public domain | W3C validator |