| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. The weak deduction theorem dedth 4535 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11425, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11355 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
| 3 | 1re 11115 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | 3 | elimel 4546 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 5 | 4 | renegcli 11425 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 6 | 2, 5 | dedth 4535 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4476 ℝcr 11008 1c1 11010 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: resubcl 11428 negreb 11429 renegcld 11547 negn0 11549 negf1o 11550 ltnegcon1 11621 ltnegcon2 11622 lenegcon1 11624 lenegcon2 11625 mullt0 11639 mulge0b 11995 mulle0b 11996 negfi 12074 infm3lem 12083 infm3 12084 riotaneg 12104 elnnz 12481 btwnz 12579 ublbneg 12834 supminf 12836 uzwo3 12844 zmax 12846 rebtwnz 12848 rpneg 12927 negelrp 12928 max0sub 13098 xnegcl 13115 xnegneg 13116 xltnegi 13118 rexsub 13135 xnegid 13140 xnegdi 13150 xpncan 13153 xnpcan 13154 xadddi 13197 iooneg 13374 iccneg 13375 icoshftf1o 13377 dfceil2 13743 ceicl 13745 ceige 13748 ceim1l 13751 negmod0 13782 modaddb 13813 negmod 13823 addmodlteq 13853 crim 15022 cnpart 15147 sqrtneglem 15173 absnid 15205 max0add 15217 absdiflt 15225 absdifle 15226 sqreulem 15267 resinhcl 16065 rpcoshcl 16066 tanhlt1 16069 tanhbnd 16070 remulg 21514 resubdrg 21515 cnheiborlem 24851 evth2 24857 ismbf3d 25553 mbfinf 25564 itgconst 25718 reeff1o 26355 atanbnd 26834 sgnneg 32778 ltflcei 37592 cos2h 37595 iblabsnclem 37667 ftc1anclem1 37677 areacirclem2 37693 areacirclem3 37694 areacirc 37697 mulltgt0 45004 rexabslelem 45401 xnegrecl 45421 supminfrnmpt 45428 supminfxr 45447 limsupre 45626 climinf3 45701 liminfreuzlem 45787 stoweidlem10 45995 etransclem46 46265 smfinflem 46802 finfdm 46831 ceilbi 47321 ceildivmod 47327 line2 48741 |
| Copyright terms: Public domain | W3C validator |