| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. The weak deduction theorem dedth 4543 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11459, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11389 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
| 3 | 1re 11150 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | 3 | elimel 4554 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 5 | 4 | renegcli 11459 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 6 | 2, 5 | dedth 4543 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4484 ℝcr 11043 1c1 11045 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: resubcl 11462 negreb 11463 renegcld 11581 negn0 11583 negf1o 11584 ltnegcon1 11655 ltnegcon2 11656 lenegcon1 11658 lenegcon2 11659 mullt0 11673 mulge0b 12029 mulle0b 12030 negfi 12108 infm3lem 12117 infm3 12118 riotaneg 12138 elnnz 12515 btwnz 12613 ublbneg 12868 supminf 12870 uzwo3 12878 zmax 12880 rebtwnz 12882 rpneg 12961 negelrp 12962 max0sub 13132 xnegcl 13149 xnegneg 13150 xltnegi 13152 rexsub 13169 xnegid 13174 xnegdi 13184 xpncan 13187 xnpcan 13188 xadddi 13231 iooneg 13408 iccneg 13409 icoshftf1o 13411 dfceil2 13777 ceicl 13779 ceige 13782 ceim1l 13785 negmod0 13816 modaddb 13847 negmod 13857 addmodlteq 13887 crim 15057 cnpart 15182 sqrtneglem 15208 absnid 15240 max0add 15252 absdiflt 15260 absdifle 15261 sqreulem 15302 resinhcl 16100 rpcoshcl 16101 tanhlt1 16104 tanhbnd 16105 remulg 21492 resubdrg 21493 cnheiborlem 24829 evth2 24835 ismbf3d 25531 mbfinf 25542 itgconst 25696 reeff1o 26333 atanbnd 26812 sgnneg 32731 ltflcei 37575 cos2h 37578 iblabsnclem 37650 ftc1anclem1 37660 areacirclem2 37676 areacirclem3 37677 areacirc 37680 mulltgt0 44989 rexabslelem 45387 xnegrecl 45407 supminfrnmpt 45414 supminfxr 45433 limsupre 45612 climinf3 45687 liminfreuzlem 45773 stoweidlem10 45981 etransclem46 46251 smfinflem 46788 finfdm 46817 ceilbi 47307 ceildivmod 47313 line2 48714 |
| Copyright terms: Public domain | W3C validator |