| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. The weak deduction theorem dedth 4547 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11483, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11413 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
| 2 | 1 | eleq1d 2813 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
| 3 | 1re 11174 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | 3 | elimel 4558 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 5 | 4 | renegcli 11483 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 6 | 2, 5 | dedth 4547 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4488 ℝcr 11067 1c1 11069 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: resubcl 11486 negreb 11487 renegcld 11605 negn0 11607 negf1o 11608 ltnegcon1 11679 ltnegcon2 11680 lenegcon1 11682 lenegcon2 11683 mullt0 11697 mulge0b 12053 mulle0b 12054 negfi 12132 infm3lem 12141 infm3 12142 riotaneg 12162 elnnz 12539 btwnz 12637 ublbneg 12892 supminf 12894 uzwo3 12902 zmax 12904 rebtwnz 12906 rpneg 12985 negelrp 12986 max0sub 13156 xnegcl 13173 xnegneg 13174 xltnegi 13176 rexsub 13193 xnegid 13198 xnegdi 13208 xpncan 13211 xnpcan 13212 xadddi 13255 iooneg 13432 iccneg 13433 icoshftf1o 13435 dfceil2 13801 ceicl 13803 ceige 13806 ceim1l 13809 negmod0 13840 modaddb 13871 negmod 13881 addmodlteq 13911 crim 15081 cnpart 15206 sqrtneglem 15232 absnid 15264 max0add 15276 absdiflt 15284 absdifle 15285 sqreulem 15326 resinhcl 16124 rpcoshcl 16125 tanhlt1 16128 tanhbnd 16129 remulg 21516 resubdrg 21517 cnheiborlem 24853 evth2 24859 ismbf3d 25555 mbfinf 25566 itgconst 25720 reeff1o 26357 atanbnd 26836 sgnneg 32758 ltflcei 37602 cos2h 37605 iblabsnclem 37677 ftc1anclem1 37687 areacirclem2 37703 areacirclem3 37704 areacirc 37707 mulltgt0 45016 rexabslelem 45414 xnegrecl 45434 supminfrnmpt 45441 supminfxr 45460 limsupre 45639 climinf3 45714 liminfreuzlem 45800 stoweidlem10 46008 etransclem46 46278 smfinflem 46815 finfdm 46844 ceilbi 47334 ceildivmod 47340 line2 48741 |
| Copyright terms: Public domain | W3C validator |