| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > renegcl | Structured version Visualization version GIF version | ||
| Description: Closure law for negative of reals. The weak deduction theorem dedth 4531 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 11422, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| renegcl | ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negeq 11352 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → -𝐴 = -if(𝐴 ∈ ℝ, 𝐴, 1)) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℝ, 𝐴, 1) → (-𝐴 ∈ ℝ ↔ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ)) |
| 3 | 1re 11112 | . . . 4 ⊢ 1 ∈ ℝ | |
| 4 | 3 | elimel 4542 | . . 3 ⊢ if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 5 | 4 | renegcli 11422 | . 2 ⊢ -if(𝐴 ∈ ℝ, 𝐴, 1) ∈ ℝ |
| 6 | 2, 5 | dedth 4531 | 1 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ifcif 4472 ℝcr 11005 1c1 11007 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: resubcl 11425 negreb 11426 renegcld 11544 negn0 11546 negf1o 11547 ltnegcon1 11618 ltnegcon2 11619 lenegcon1 11621 lenegcon2 11622 mullt0 11636 mulge0b 11992 mulle0b 11993 negfi 12071 infm3lem 12080 infm3 12081 riotaneg 12101 elnnz 12478 btwnz 12576 ublbneg 12831 supminf 12833 uzwo3 12841 zmax 12843 rebtwnz 12845 rpneg 12924 negelrp 12925 max0sub 13095 xnegcl 13112 xnegneg 13113 xltnegi 13115 rexsub 13132 xnegid 13137 xnegdi 13147 xpncan 13150 xnpcan 13151 xadddi 13194 iooneg 13371 iccneg 13372 icoshftf1o 13374 dfceil2 13743 ceicl 13745 ceige 13748 ceim1l 13751 negmod0 13782 modaddb 13813 negmod 13823 addmodlteq 13853 crim 15022 cnpart 15147 sqrtneglem 15173 absnid 15205 max0add 15217 absdiflt 15225 absdifle 15226 sqreulem 15267 resinhcl 16065 rpcoshcl 16066 tanhlt1 16069 tanhbnd 16070 remulg 21544 resubdrg 21545 cnheiborlem 24880 evth2 24886 ismbf3d 25582 mbfinf 25593 itgconst 25747 reeff1o 26384 atanbnd 26863 sgnneg 32816 ltflcei 37658 cos2h 37661 iblabsnclem 37733 ftc1anclem1 37743 areacirclem2 37759 areacirclem3 37760 areacirc 37763 mulltgt0 45129 rexabslelem 45526 xnegrecl 45546 supminfrnmpt 45553 supminfxr 45572 limsupre 45749 climinf3 45824 liminfreuzlem 45910 stoweidlem10 46118 etransclem46 46388 smfinflem 46925 finfdm 46954 ceilbi 47443 ceildivmod 47449 line2 48863 |
| Copyright terms: Public domain | W3C validator |