![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > msqgt0 | Structured version Visualization version GIF version |
Description: A nonzero square is positive. Theorem I.20 of [Apostol] p. 20. (Contributed by NM, 6-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
msqgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | 0red 10361 | . . . 4 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
3 | 1, 2 | lttri2d 10496 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
4 | 3 | biimpa 470 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
5 | mullt0 10872 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐴 ∈ ℝ ∧ 𝐴 < 0)) → 0 < (𝐴 · 𝐴)) | |
6 | 5 | anidms 564 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐴)) |
7 | mulgt0 10435 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 < (𝐴 · 𝐴)) | |
8 | 7 | anidms 564 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐴)) |
9 | 6, 8 | jaodan 987 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 < 0 ∨ 0 < 𝐴)) → 0 < (𝐴 · 𝐴)) |
10 | 4, 9 | syldan 587 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 880 ∈ wcel 2166 ≠ wne 3000 class class class wbr 4874 (class class class)co 6906 ℝcr 10252 0cc0 10253 · cmul 10258 < clt 10392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 |
This theorem is referenced by: msqge0 10874 0lt1 10875 msqgt0i 10890 msqgt0d 10920 recextlem2 10984 inelr 11341 msqznn 11788 sqgt0 13227 |
Copyright terms: Public domain | W3C validator |