Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > msqgt0 | Structured version Visualization version GIF version |
Description: A nonzero square is positive. Theorem I.20 of [Apostol] p. 20. (Contributed by NM, 6-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
msqgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
2 | 0red 10909 | . . . 4 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
3 | 1, 2 | lttri2d 11044 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴))) |
4 | 3 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴)) |
5 | mullt0 11424 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐴 ∈ ℝ ∧ 𝐴 < 0)) → 0 < (𝐴 · 𝐴)) | |
6 | 5 | anidms 566 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐴)) |
7 | mulgt0 10983 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 < (𝐴 · 𝐴)) | |
8 | 7 | anidms 566 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐴)) |
9 | 6, 8 | jaodan 954 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 < 0 ∨ 0 < 𝐴)) → 0 < (𝐴 · 𝐴)) |
10 | 4, 9 | syldan 590 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 · cmul 10807 < clt 10940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: msqge0 11426 0lt1 11427 msqgt0i 11442 msqgt0d 11472 recextlem2 11536 inelr 11893 msqznn 12332 sqgt0 13773 |
Copyright terms: Public domain | W3C validator |