MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  msqgt0 Structured version   Visualization version   GIF version

Theorem msqgt0 10873
Description: A nonzero square is positive. Theorem I.20 of [Apostol] p. 20. (Contributed by NM, 6-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
msqgt0 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴))

Proof of Theorem msqgt0
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2 0red 10361 . . . 4 (𝐴 ∈ ℝ → 0 ∈ ℝ)
31, 2lttri2d 10496 . . 3 (𝐴 ∈ ℝ → (𝐴 ≠ 0 ↔ (𝐴 < 0 ∨ 0 < 𝐴)))
43biimpa 470 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (𝐴 < 0 ∨ 0 < 𝐴))
5 mullt0 10872 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐴 ∈ ℝ ∧ 𝐴 < 0)) → 0 < (𝐴 · 𝐴))
65anidms 564 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐴))
7 mulgt0 10435 . . . 4 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 < (𝐴 · 𝐴))
87anidms 564 . . 3 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐴))
96, 8jaodan 987 . 2 ((𝐴 ∈ ℝ ∧ (𝐴 < 0 ∨ 0 < 𝐴)) → 0 < (𝐴 · 𝐴))
104, 9syldan 587 1 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → 0 < (𝐴 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 880  wcel 2166  wne 3000   class class class wbr 4874  (class class class)co 6906  cr 10252  0cc0 10253   · cmul 10258   < clt 10392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-po 5264  df-so 5265  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589
This theorem is referenced by:  msqge0  10874  0lt1  10875  msqgt0i  10890  msqgt0d  10920  recextlem2  10984  inelr  11341  msqznn  11788  sqgt0  13227
  Copyright terms: Public domain W3C validator